2022A1781

BL19B2

酸素脱離させた Li 過剰系材料の結晶構造解析 Structural Analysis on Deoxidated Li-rich Cathode Material

<u>松永 利之</u>, アイレシデン アブリケム <u>Toshiyuki Matsunaga</u>, Aierxiding Abulikemu

京都大学大学院 人間・環境学研究科 Graduate School of Human and Environmental Studies, Kyoto University

環境破壊の問題を解決、クリーンなエネルギーの需要を満たすため、次世代高容量正極材料、いわゆる過剰系材料の一つ、Li_{1.2}MeO₂(Me: Mn_{0.4}Co_{0.2}Ni_{0.2})において、より安定した動作/更なる高容量化を目指してその結晶から O を脱離させ、SPring-8/BL19B2 を利用して粉末回折測定を行い、Rietveld 法によりその結晶構造を詳細に解析した。

キーワード: リチウムイオン電池、過剰系材料、酸素脱離、リートベルト解析

背景と研究目的:

逼迫した環境破壊の問題を解決するため、言い換えればクリーンなエネルギーの需要を満たす ため、リチウムイオン電池(LIB)は、その比容量において現行のLiMeO2(MeはCo、Mn、Ni、 或いはそれら遷移金属を混ぜ合わせたもの)を凌ぐ、いわゆる過剰系化合物と呼ばれるLi2MeO3 の開発が進められている。ただ、この材料は充電に伴って、遷移金属が酸化されるのみならず、O までもが酸化され、酸化されたOは分子を形成し結晶の外に放出され、やがては活物質結晶の崩 壊を来すという致命的な欠陥を有している。このOの放出を防ぐため、例えばLi2MeO2やLi2MeF4 のような化合物を合成し、遷移金属の酸化数を下げておいて、充放電時に遷移金属の、なるべく 広範囲なレドックス反応を利用しようという試みがなされている。我々は、CaH2を用いて、過剰 系材料の一つLi12MeO2(Me:Mn0.4Co0.2Ni0.2)のOサイトから、Oをマクロに脱離させることに成 功した。この課題では、SPring-8/BL19B2で測定した粉末回折データを用いた Rietveld 法による精 密な構造解析の結果、このO脱離試料内の酸素の原子配置を明らかにしたのでここに報告する。

実験:

O 脱離試料は、Li_{1.2}MeO₂ (Me: Mn_{0.4}Co_{0.2}Ni_{0.2})粉末と CaH₂粉末を混ぜペレット化しガラス管に 封入、Ar 雰囲気中で蒸焼することにより作製した。未反応の CaH₂および副生成物の Li₂O をメタ ノールで洗浄・乾燥し、目的物質を得た。放射光粉末 X 線測定は大型放射光施設 SPring-8/BL19B2 を利用し行った。結晶構造解析は、JANA2006 解析プログラム[1]を用い実行した。

結果および考察:

Rietveld 解析の結果を図 1 並びに表 1 に示す。Li_{1.2}MeO₂ (Me: Mn_{0.4}Co_{0.2}Ni_{0.2})は、組成的に Li₂MnO₃ (単斜晶: C 2/m) と Li Ni_{1/3}Co_{1/3}Mn_{1/3}O₂ (菱面体晶: R-3m)の中間化合物と考えることができ、 その構造は Li₂MeO₃ で近似できる。これらの構造は、いずれも、一O 層—Li 層—O 層—TM 層— の四つの原子層 (TM 層:遷移金属層)が、この順番で、無限に積層して形成されている(図 2 参 照)。菱面体晶: R-3m の Li Ni_{1/3}Co_{1/3}Mn_{1/3}O₂は、空間群 C2/m を用いても問題なく構造解析が可能 である。Li_{1.2}MeO₂ (Me:Mn_{0.4}Co_{0.2}Ni_{0.2})は、LiMeO₂ (Me: Co_{0.5}Ni_{0.5})と Li₂MnO₃ (単斜晶: C2/m) がランダムに配列した構造と考えることができ、従って Li_{1.2}MeO₂ (Me: Mn_{0.4}Co_{0.2}Ni_{0.2})の構造は、 空間群: C2/m を用いて解析可能となる。具体的には、C 2/m で記述される Li_{1.2}MeO₂

(Me:Mn_{0.4}Co_{0.2}Ni_{0.2})の、TM 層(三角格子: 2b サイトとハニカム格子: 4g サイト)を、Mn、Co、 Ni と、そして Li が占有しているとして、解析を行った。

表1:Rietveld 解析で得られた構造パラメーター ------

Space group name C 2/m (12)								
a 4.94960	b 8. 57400	c a 5.03070 90	alpha bet).0000 109.0	a gamma 000 90.000	0			
Unit-cell volume = 201.860861 Å^3								
		Х	У	Z	0cc.	U	Site	Sym.
1 Li	Li1	0.00000	0.50000	0.0000	0.131	0.004	2b	2/m
2 Mn	Mn1	0.00000	0.50000	0.0000	0.435	0.004	2b	2/m
3 Co	Co1	0.00000	0.50000	0.0000	0.217	0.004	2b	2/m
4 Ni	Ni1	0.00000	0.50000	0.0000	0.217	0.004	2b	2/m
5 Li	Li2	0.00000	0.16759	0.0000	0.235	0.004	4g	2
6 Mn	Mn2	0.00000	0.16759	0.0000	0.383	0.004	4g	2
7 Co	Co2	0.00000	0.16759	0.0000	0.191	0.004	4g	2
8 Ni	Ni2	0.00000	0.16759	0.0000	0.191	0.004	4g	2
9 Li	Li3	0.00000	0.00000	0.50000	1.000	0.004	2c	2/m
10 Li	Li4	0.00000	0.64727	0.50000	1.000	0.004	4h	2
11 0	01	0.26201	0.00000	0.22383	0.839	0.003	4i	m
12 0	02	0.24146	0.32795	0.23361	0.986	0.003	8j	1

構造解析結果を表1、図1に示す。 両者、C2/mを用いた解析で、十分に良 い結果が得られた。TM 層における三 角格子: 2b サイトにはより多く Li が、 一方、ハニカム格子にはより多くの遷 移金属が占有していた。還元後の試料 においては、還元前のものに比べ、こ の酸素の脱離により、格子は大きく膨 張していた。これは、Mn に配位してい る六つの酸素の一部が欠損し、Mn と 欠損酸素の間の距離が伸びたためと考 えられる。Oは、4i、8jの両方の酸素 サイトからの脱離が認められるが、特 に 4*i* サイトからの O 脱離が顕著であ った。この 4*i* サイトから O 脱離は、深 さ方向分布が多少は存在するものと思 われるが、結晶全体で平均的に生じている と考えられる。なぜなら、回折線において、 格子定数の連続的な分布を示す広がりや、 また、O 濃度の濃い部分と薄い部分の存在 を示すピーク分離も観察されないからで ある。

今後の展開:

この脱酸素処理により、上でも述べた が、遷移金属のレドックスがより広範囲に 使えるようになり、活物質の比容量及びサ イクル特性が向上するものと期待される。 また、欠陥サイトをFで埋めて、遷移金属

図 2: Li_{1.2}MeO₂ (Me: Ni_{0.4}Co_{0.2}Mn_{0.2})の結晶構造 Li (緑)、Mn (紫)、Ni (青)、Co (銀)、O (赤)

の広範囲なレドックス反応を確保しつつ、併せて酸素脱離を阻止し、更に層間の平坦性をも確保 して、構造の安定化及びレート特性の向上も図っていきたいと考えている。

参考文献:

[1] V. Petříček, M. Dušek, L. Palatinus; 229(5), 345 (2014)