<u>XAFS 計測手順【蛍光法・19 素子半導体検出器】</u> <u>斜入射測定手順</u>

2014.02.25 改定 大渕 博宣

- 0. 斜入射セッティングの前に行うこと
- (1) [ThetaMove]でエネルギーを合わせ(Appendix I 参照)、
 [dThScan]で回折強度最大の位置に移動しておく(Appendix II 参照)。
- (2) 4D Slit サイズを height 1.0mm×width 0.5mm 以下にする(Appendix IV参照)。
- 1. 所定の位置に配置する。
- (1) 19素子半導体検出器を所定の位置にセッティングする。

(2) 斜入射用 Sample stage をセッティングする。(ホール側に出し、目盛りに合わせる。)

(3) [PM16C Move]で「DetectorZ」を「48mm」、「DetectorX」を「50mm」の位置に移動す

る。(Appendix V参照)

※ DetectorX 0mm の位置で DetectorZ を移動させるのが望ましい。

(4) [PM16C Move]で「Sample stage X、Z、Lin.、θ」等の値を確認する。(Appendix V参照)

※「0」でなければ、「0」にする。

(5) 試料を両面テープ等で固定しセットする。

(6) [PM16C Move]で Sample 表面付近にレーザーが当たるように高さを調整する。

(Appendix V参照)

※サンプル交換の時は、「2. サンプル位置調整」から行う。

2. サンプル位置調整

注) 4D Slit サイズ height 1.0mm×width 0.5mm 以下からスタートし、
[SSDCountCheck]で SSD で検出される X 線の強度を確認(Appendix VI参照)しながら、
4D Slit の[width]を変更する。(Appendix IV参照)(例:0.5mm 以下 ⇒ 5.0mm)

(1) DSS を「開」にする。

① BL14B2 Control2.viのメニュー窓から「DSS」を選択する。

 KEITHLEY 2000 MULTIMATER で、カレントアンプの出力値(I0、I1 共に 10V 以下)を確認する。

③ オーバーフローしていれば、[Current Amp Set] を起動させてゲインを下げる。

- ※ Appendix Ⅲ 「Current Amp Set」参照。
- (2) [PM16C Move]で「Sample theta」の値を Read し、0°でなければ 0°にする。(Appendix V参照)
- (3) [PM16C Move]で「Sample Lin」.の値を読む。
 - ① [Channel]で"B. Sample Lin."を選択する。
 - ② [Read/Move]が"Read"であることを確認する。

③ 実行ボタン シをクリックする。

- (4) [PM16C SingleScan]で「Sample Lin.」を Scan する。
 - ① [Channel]で"B. Sample Lin."を選択する。
 - ② スキャン範囲 ([Measure Start]、[Start position]、[step]、[Dest. position]) を入力 する。

- ③ 実行ボタン Dをクリックした後、[Start OK]ボタンを押してスキャンを実行する。
- ④ I1 カウントの高さ走査の中間点の横軸の値を読む。

(5) [PM16C Move]で「Sample Lin.」を(4)-④で読んだ値(半割り値)にする。

※2-(3)参照

- ① [Channel]で"B. Sample Lin."を選択する。
- [Input position]に数値を入力する。
- ③ [Read/Move]を"Move"にする。
- ④ 実行ボタンをクリックする。

(6) [PM16C Move]で「Sample theta」の値を読む。

- ① [Channel]で"9. Sample theta"を選択する。
- ② [Read/Move]が"Read"であることを確認する。
- ③ 実行

PM16C-Move2.VI				
ファイル(E) 編集(E) 操作(Q)	ツール(T)	参照(B)	ウィンドウ(型)	PM16C
수 🕸 🖲 🛯			3	CONTROL
				
Channel	PM16	C GPIB	PM16C GPIE	32
9. Sample theta	<u>=no</u>		9 6	
Present position	Read	pulse		
1.0000	Ē			
		Ę.		
Input position	Move	mm / dea	5	
1.0000	-			
	Spee	ed		
Abs.	Mid	dle 🔻		
4			1	
				- //,

(7) [PM16C SingleScan]で「Sample theta」を Scan する。

- ① [Channel]で"9. Sample theta"を選択する。
- ② [19SSD Counter]で "Axcpci3901"を選択する。
- ③ [End Position] で"Dest."を選択する。
- ④ スキャン範囲([Measure Start]、[Start position]、[step]、[Dest. position])を入力す

る。

Scan 範囲例 バックラッシュ:0.1 -3°~3° step:0.1

⑤ 実行ボタン ♪をクリックした後、[Start OK]ボタンを押してスキャンを実行する。
 ⑥ 12 カウントのピークの値を読む。

(8) [PM16C Move] \mathcal{C} [Sample theta] \mathcal{E} Move $\mathcal{T}\mathcal{S}_{\circ}$

- ※ 2-(6)参照
- ① [Channel]で"9. Sample theta"を選択する。
- ② [Input position]に(7)-⑥で読み取った数値を入力する。
- ③ [Read/Move]を"Move"にする。
- ④ 実行ボタン をクリックする

(9) (3)-(8)を繰り返し、"Sample Lin""Sample theta"の値に変化がなければ試料の半割りを 終了し、次の手順に移る。

(10) [PM16C SingleScan]で「Sample theta」を Scan する。

- ① [Channel]で"9. Sample theta"を選択する。
- ② [19SSD Counter]で "KC3122"を選択する。
- ③ [End Position] で"Dest."を選択する。
- ④ スキャン範囲([Measure Start]、[Start position]、[step]、[Dest. position])を入力す

る。 Scan 範囲例 バックラッシュ : 0.1 0° ~3° step: 0.1

- ⑤ 実行ボタン シをクリックした後、[Start OK]ボタンを押してスキャンを実行する。
- ⑥ I2 カウントのピークから 0.4°~0.5°深い値を読む。

(11) [PM16C Move] \tilde{c} [Sample theta] \tilde{c} Move $\tau \delta_{\circ}$

- ※ 2-(6)参照
- ① [Channel]で"9. Sample theta"を選択する。
- ② [Input position]に(7)-⑥で読み取った数値を入力する。
- ③ [Read/Move]を"Move"にする。
- ④ 実行ボタン シをクリックする。

(12) [SSD Count Check]で ICR を確認する。(できるだけ width は 0.5mm 以下) (Appendix VI参照)

※ 5万 cps 以下でできるだけ大きい値になるように、DetectorX,4DSlit などで調整する。 (13) [PM16C SingleScan]で「Sample Lin.」を Scan する。

① [Channel]で"B. Sample Lin."を選択する。

② スキャン範囲([Measure Start]、[Start position]、[step]、[Dest. position])を入力す る。

...... Scan 範囲例 (1.5mm 前後 Scan する場合) □:Read した値 Measure Start:
□- 2.0 Start position: \Box - 1.5 step: 0.05 Dest. position: \Box + 1.5

③実行ボタン シをクリックした後、[Start OK]ボタンを押してスキャンを実行する。 ④ I2 カウントのピーク中心の横軸の値を読む。

(14) [PM16C Move]で「Sample Lin.」を(10)-④で読んだ値(ピーク中心値)にする。

- ※ 2-(3)参照
 - ① [Channel]で"B. Sample Lin."を選択する。
 - [Input position]に数値を入力する。
 - ③ [Read/Move]を"Move"にする。
 - ④ 実行ボタン シをクリックする。

3. XAFS スペクトルの測定

XAFS測定プログラムの使用方法については45°入射配置の時と同様であるので、別紙 「XAFS測定手順 【蛍光法・19素子半導体検出器】アナログ計測系 測定手順(45° 入射)」の「4. XAFSスペクトルの測定」を参照のこと。 4. 斜入射配置の退避方法

(1) [PM16C Move]で「Detector X」と「Detector Z」を「0mm」の位置に移動する。(Appendix V参照)

※DetectorX 0mmの位置でDetectorZを移動させるのが望ましい。

(2) [PM16C Move]で「Sample stage Lin., θ」の値を「0」の位置に移動する。(Appendix V 参照)

※「Sample stage X,Z」の値を確認し、「0mm」でなければ、「0mm」にする。

(3) 19素子半導体検出器をホール側と下流にいっぱい下げる。

(4) 斜入射用Sample stageをリング側に下げる。

以上

改訂履歷

改訂年月日	改訂者	
2007.02.28	平山 明香	
2007.10.30	大渕 博宣	
2008.02.05	陰地 宏	
2014.02.25	大渕 博宣	