

小出明広

JASRI

実習(2)

FDMNESによる XANESシミュレ ーション

2023版

株式会社ダイセル (公益財団法人)

高輝度光科学研究センター 中田謙吾

講習の流れ

インストールと操作

基本的な計算と解説

FDMNES Cu-foilのお試し計算

とにかく動かしてみる

0) PowerShell を開く

(A)検索を開く 🔳 + S

(B) PowerShell と入力

(C) PowerShellを選択して起動

1) 計算用ディレクトリに移動する

^{スペース} cd□¥cal C: などのドライブ指定は同じドライブ内移動ならば省略できる

2	Windows PowerShell		
PS	C:¥Users¥nakada>	cd	¥cal

カレントディレクトリが C:¥cal に移動したのが確認できる

1) Cu-foil の計算用ディレクトリを作成する

גת–ג mkdir⊡Cu

2) Cu-foil の計算用ディレクトリに移動する

4) Cu の計算用入力ファイルをコピーする

5) コピーされたファイルを確認する

ls

<mark>≥ Windows</mark> PS C:¥cal ディレ	PowerShell ¥Cu> Is ィクトリ: C:¥cal¥(Du		
Mode	LastWi	riteTime	Length	Name
-a -a	2014/10/27 2014/10/27	12:20 9:07	 1067 973	fdmfile.txt inp.txt
PS C:¥cal	¥Cu>			

2つファイルがコピーされているのを確認する

合計2つのファイルを編集する

inp.txt fdmfile.txt

旧版ではさらに - spacegroup.txt - xsect.dat が必要だが 2017.10.17 版以降なくてもOK

start ¥fdmfile.txt ^{スペース} ドット 「キット

Windows PowerShell
PS C:¥cal¥Cu> start .¥fdmfile.txt

windows 上で.txt に登録してあるエディターが立ち上がる (何も登録してなければ、デフォルトでは「メモ帳」が立ち上がる)

- ファイル名が長くて入力がめんどくさいとき
 副のたく確実に日的のファイルを選択したいとき
- ・誤解なく確実に目的のファイルを選択したいとき

TAB キーを活用する

カレントディレクトリに fdm から始まるファイルが複数存在しないときは、全自動で .¥ を含めたファイル名が補完される

.txt にメモ帳が割り当てられているときは メモ帳が立ち上がる

🛃 Windows PowerShell	
PS C:¥cal¥Cu> start .¥frinfile.txt	
PS C:¥caT¥Cu>	
fdmfile.txt - メモ帳	
ファイル(F) 編集(E) 書式(O) 表示(V) ヘルプ(H)	
! General indata file for FDMNES ! with indata files examples	
1	スペース
Sim/Test_stand/in/Cu_inp.txt	
Sim/Test_stand/in/VO6_inp.txt Sim/Test_stand/in/VO6_conv_inp.txt	start _D ノアイル名
Sim/Test_stand/in/V06_nodipole_inp.txt Sim/Test_stand/in/Fe06_inp_txt	ファイル名をダブルク
Sim/Test_stand/in/Ni_inp.txt	
Sim/Test_stand/in/Ni_mg_inp.txt	リックしたのと同し -
Sim/Test_stand/in/V2U3_Inp.txt Sim/Test_stand/in/GaN_inp_txt	作たする
Sim/Test_stand/in/Fe304_inp.txt	
Sim/Test_stand/in/Fe3O4_dd_inp.txt	
Sim/Test_stand/in/Cr_inp.txt	
Sim/lest_stand/in/Ur_conv_inp.txt	
Sim/Test_stand/in/Bazznuuo_inp.txt Sim/Test_stand/in/Ca2Ce206_ipp_txt	
Sim/Test_stand/in/CoCO3_ion_tvt	
Sim/Test_stand/in/Fe203_inp.txt	

7) 編集した fdmfile.txt を名前を付けた保存する

2 Windows	PowerShell		
PS C:¥cal¥ PS C:¥cal¥	¥Cu> start .¥fdmfi ¥Cu>	le.txt	
1 🗾 fdm	file.txt - メモ帳		
ファイ	ル(F) 編集(E) 書式(O)	表示(V)	へルプ(H)
新	規(N)	Ctrl+N	ES
r 開	<(0)	Ctrl+0	
±	書き保存(S)	Ctrl+S	
名	前を付けて保存(A)	6	
~	ージ設定(U)	.0	
Ep,	刷(P)	Ctrl+P	.t×t
×	モ帳の終了(X)		_inp.txt
Sim/T Sim/T Sim/T Sim/T	est_stand/in/Ni_in est_stand/in/Ni_mg est_stand/in/V2O3	p.txt _inp.tx inp.txt	t

7) 編集した fdmfile.txt を名前を付けた保存する

fdmfile.txt の名前のままで保存する

保存場所を確認する

7) 編集した fdmfile.txt を名前を付けた保存する

保存場所を確認する

上書きします

8) 編集を終えた fdmfile.txt を閉じます

X

fdmfile.txt - メモ帳

ファイル(F) 編集(E) 書式(O) 表示(V) ヘルプ(H)

! General indata file for FDMNES ! with indata files examples

inp.txt

Sim/Test_stand/in/V06_inp.txt Sim/Test_stand/in/V06_conv_inp.txt Sim/Test_stand/in/V06_nodipole_inp.txt Sim/Test_stand/in/Fe06_inp.txt Sim/Test_stand/in/Ni_mg_inp.txt Sim/Test_stand/in/Ni_mg_inp.txt Sim/Test_stand/in/V203_inp.txt Sim/Test_stand/in/GaN_inp.txt Sim/Test_stand/in/Fe304_inp.txt Sim/Test_stand/in/Fe304_dd_inp.txt Sim/Test_stand/in/Cr_inp.txt

9) 念のため、編集したファイルをもう一度開いてみます

10) inp.txt ファイルを	編集する		start .¥inp.txt		
Fdmnes indata file			Fdmnes indata file		
! Calculation for the copper K-edge in c	opper cfc		! Calculation for the copper K-edge in copper cfc		
! Finite difference method calculation w	ith convolution		! Finite difference met	thod calculation with convolution	
9			9		
Filout			Filout		
Sim/Test_stand/Cu¶			Cu1 編集後	とは上書き保存	
Range ! Energy range of	f calculation (eV)		Range	! Energy range of calculation (eV	
-1, 0,2, 5, 0,5, 20, 1, 50, 1 first energy	sten intermediary (-1. 0.2 5. 0.5 20. 1. 5	50. ! first energy, step, intermedia	
¶	stop, internedially (9		
Radius ! Radius of the clu	uster where final st		Radius	! Radius of the cluster where fina	
3.0 For a good calcula	ation this radius m		3.0 !	For a good calculation, this radius	
Angstroems					
9	Sim/Te	st	stand/Cu		
Crystal ! Periodic materia		- ⁻		eriodic material description (un	
3.61 3.61 3.61 90, 90, 90, 1a, b, c				90. 90. ! a, b, c, (Angstroem) a	
29 0.0 0.0 0.0 IZ x y z (C		Z. x. v. z (unit cell unit)	
29 0.5 0.5 0.0		C	U	, , , , , , , , , , , , , , , , , , ,	
29 0.5 0.0 0.5					
29 0.0 0.5 0.5			29 0.0 0.5 0.5		
9			9		
Convolution keyword : broadening with	a width increasing		Convolution keyword	d : broadening with a width increa	
¶			9	j	
Convolution			Convolution		
9			9		
End	修正前		End	修正後	

11) 計算を実行する fdmnes_win64.exe

プログラムを実行する

32bit 版 windows の人は fdmnes_win32.exe を実行してください

Mac の人は fdmnes_mac を実行 Linux の人は fdmnes_linux64 を実行

34.0000	9.0743602E-02			
35.0000	9.2524000E-02			
36.0000	9.4517031E-02) -		
37.0000	9.6607556E-02) -		
38.0000	9.8725689E-02) -		
39.0000	1.0079507E-01			
40.0000	1.0269886E-01			
41.0000	1.0436507E-01			
42.0000	1.0572142E-01			
43.0000	1.0670829E-01			
44.0000	1.0729099E-01			
45.0000	1.0749008E-01			
46.0000	1.0730480E-01			
47.0000	1.0676325E-01			
48.0000	1.0587236E-01			
49.0000	1.0459175E-01			
50.0000	1.0297074E-0			
Arctangent	model			
Gamma m	ax = 15.00.	Ecent = 30.00.	Flare =	30.00
Gamma h	ole = 1.55.	$F_{cut} = 0.000$.	Shift =	0.000 eV
E (ev) Width (e	eV) lambda (A)		
-1.00	0 1.550	0.000		
2.40	0 1.608	199.585		
6.00	0 1.917	37.631		
9.50	0 2.482	16.761		
13.00	0 3.327	9.713		
16.00	0 4.270	6.823		
19.50	0 5.554	4.987		
23.00	0 6.877	3.997		
27.00	0 8.222	3.404		
30.00	0 9.050	3.162		旦必
33.00	0 9.729	3.016		取り
37.00	0 10.448	2.909		
40.00	0 10.882	2.867		
44.00	0 11.357	2.842		
47.00	0 11.655	2.839		
50.00	0 11.915	2.843		
<u> </u>	A STATE OF S			

しょそじひしそしし。

スナップショットは FDMNES の 2015/12/16 バージョンの結果

	Ou_bav.txt - メモ帳		
13) ログファイルの確認	ファイル(F) 編集(E)	書式(0)表示(V)	へルプ(H)
、スペース	13.000 14.000 15.000 16.000	5.716 6.099 6.478 6.850	4.719 4.408 4.148 3.928
start.¥Cu_bav.txt	17.000	7.210	3.744 3.589
_ Cu_bav.txt ファイルの 中身を見る	19.000 20.000 21.000 22.000 23.000 24.000 25.000 26.000 27.000 28.000 29.000 30.000	7.886 8.199 8.494 8.772 9.031 9.274 9.502 9.714 9.913 10.099 10.273 10.437	3.458 3.349 3.256 3.178 3.113 3.058 3.011 2.972 2.939 2.911 2.888 2.869
ファイルの一番最後を見る	31.000 32.000 33.000 34.000 35.000 36.000 37.000 38.000 39.000 40.000	10.590 10.735 10.872 11.001 11.123 11.239 11.349 11.453 11.553 11.648	2.853 2.840 2.830 2.822 2.816 2.811 2.808 2.806 2.806 2.806 2.806
計算時間	Total time =	10.7 sCPU	
Have a beautiful day !	Have a beaut	iful day !	

FCC Cu クラスター半径R=3.0 (FDM計算) conventional cell

2.6 GHz Intel Core i5(VMware on Mac) 約10秒

AMD E-450 1.65GHz

約50秒

今回の実習で一回の計算で一番重い計算は

BaTiO3 R3m (セルは cubic にする)

2.6 GHz Intel Core i5(VMware on Mac)

AMD E-450 1.65GHz

約16秒

約60秒

もし、 BaTiO3 R3m (文字通りロンボのままで計算したら AMD だと 16分) 14) 計算結果をプロットする

fdmfile.txt

14) 計算結果をプロットする(Cu_conv.txt の編集)

start .¥Cu_conv.txt

スペース

Cu_conv.txt	- メモ帳
ファイル(F) 新	編集(E) 書式(O) 表示(V) ヘルプ(H)
Energy -10.000 -9.800 -9.600 -9.400 -9.200 -9.000 -8.800 -8.600 -8.400 -8.200 -8.000 -7.800	<pre></pre>

14) 計算結果をプロットする(Cu_conv.txt の編集)

GNUPLOT でプロットするために1行目をコメントアウトする

名前を付けて上書き保存

15) 計算結果をプロットする(GNUPLOT の立ち上げ) wgnuplot

Windows PowerShell

PS C:¥cal¥Cu> wgnuplot

16) wgnuplot 上でプロットコマンドの入力

gnup	lot
ファイル	レ(F) プロット(P) 表現(E) 関数(N) 一般(G) 軸(A) チャ
~ 再表示	〒 ☞開く ■保存 ഈ移動 魯印刷 魯ダンプ ③前 ◎次
	G N U P L O T Version 5.1 patchlevel O – last modified 2015-08-28
	Copyright (C) 1986-1993, 1998, 2004, 2007-2015 Thomas Williams, Colin Kelley and many others
	gnuplot home: http://www.gnuplot.info mailing list: gnuplot-beta@lists.sourceforge.net faq, bugs, etc: type "help FAQ"
	immediate help: type "help" (plot window: hit 'h')
Terminal gnuplot> gnuplot>	type set to 'wxt' plot 'Cu_conv.txt' _

16) wgnuplot 上でプロットコマンドの入力

TAB 補完について

XANESスペクトルの結果が以前バージョンと比べるとシフト

17) GNUPLOT の結果を画像ファイルとして保存

gnulot 上で ^{スペース} set_terminal_png set_output_'Cu.png' plot_'Cu_conv.txt'_w_l q

出力形式を png にする 出力ファイル名を Cu.png にする plot し直す(replot コマンドでもよい) gunplot を閉じる

```
Terminal type set to 'wxt'
gnuplot> set terminal png
Terminal type set to 'png'
Options are 'nocrop enhanced size 640,480 font "arial,12" '
gnuplot> set output 'Cu.png'
gnuplot> plot 'Cu_conv.txt' w l
gnuplot> q_
```

注意) プロットは画面に表示されない 画面に表示される代わりにファイルに出力される

17) GNUPLOT の結果を画像ファイルとして保存 画面に表示される代わりに出力されたファイル ls PS C:¥cal¥Cu> ls ディレクトリ: C:¥cal¥Cu LastWriteTime Length Name Mode 4334 Cu.png 2016/01/01 14:39 a-2016/01/01 10:46 2979 Cu.txt a---2016/01/01 10:46 2201965 Cu_bav.txt a---2016/01/01 14:12 2756 Cu_conv.txt a---2016/01/01 10:20 1046 fdmfile.txt a---2016/01/01 10:46 958 inp.txt -a---PS C:¥cal¥Cu>

18) Cu.png ファイルの表示

zペース start□Cu.png

拡張子 *.png に割り当てられているビューアが起動 (windows7/10/11 だとフォトビューアー)

FDMNES 計算の基本的な流れ
計算に必要なファイル(基本となる入力ファイル)

fdmfile.txt

Image: Ima

! General indata file for FDMNES ! with indata files examples

|inp.txt

Sim/Test stand/in/VO6 inp.txt Sim/Test^{_}stand/in/VO6^{_}conv inp.txt Sim/Test_stand/in/VO6_nodipole_inp.txt Sim/Test_stand/in/FeO6 inp.txt Sim/Test_stand/in/Ni_inp.txt Sim/Test^{_}stand/in/Ni^{_}mg_inp.txt Sim/Test stand/in/V2O3 inp.txt Sim/Test_stand/in/GaN_inp.txt |Sim/Test_stand/in/Fe304_inp.txt |Sim/Test_stand/in/Fe304_dd_inp.txt Sim/Test_stand/in/Cr_inp.txt |Sim/Test_stand/in/Cr_conv_inp.txt |Sim/Test_stand/in/Ba2ZnUO6 inp.txt Sim/Test_stand/in/Ca3Co2O6_inp.txt |Sim/Test_stand/in/CoCO3_inp.txt |Sim/Test_stand/in/Fe2O3_inp.txt Sim/Test stand/in/Fe2O3 selec inp.txt |Sim/Test_stand/in/Fe2O3_scf_inp.txt Sim/Test_stand/in/Fe2O3_hub_inp.txt Sim/Test stand/in/Fe bio inp.txt Sim/Test_stand/in/NdMg_inp.txt Sim/Test_stand/in/Pt13_inp.txt

入力ファイル名を inp.txt とする

今回の実習ではこのファ イルはもう編集しません

fdmfile.txt

入力ファイルの指定 連続して複数の入力ファイルで計算を実行できる

注意)あまりこの機能は使わない方が健全 (複数のファイルを別のディレクトリで出力するのオススメしない)

入力と出力は同じディレクトリ内で完結するべき(同じところに置くべき) 連続処理をさせたいときは、スクリプト(windowsならばバッチ)を書く

inp.txt

inp.txt

F	İ	0	u	t
	(u		

Filout を Cu としたとき

Windows PowerShell

PS C:¥cal¥Cu> ls

出力ファイルのヘッダ部分が Cu になる

ディレクトリ: C:¥cal¥Cu

	Mode
	-a
	-a
	-a
	-a
1	-a

a-

LastWriteTime 2016/01/01 14:39 2016/01/02 9:07 2016/01/01 10:46 2016/01/01 14:12 2016/01/01 10:20 2016/01/01 10:20

Length Name 4334 Cu.png 2981 Cu.txt 2201965 Cu_bav.txt 2756 Cu_conv.txt 1046 fdmfile.txt 958 inp.txt inp.txt

計算するエネルギー範囲

スペースで区切る

いくらでも追加できる。 -20.2.-10.1.-1.0.2 5.0.5 20.1.50.

等もOK。

入力パラメーターは複数のタグとそにれ関連付けられた パラメータで定義される

> Tag Parameter

基本ルール

◆コメントアウト記号は!(半角)
 ◆タグと関連づけられたパラメータの間ににコメントは付けられない
 ◆大文字と小文字は区別しない
 ◆ タブは使えない
 ◆ 行頭のスペースは無視される
 ◆ タグは全部の文字の入力が必要(省略不可)

Fileout ! Fe2O3 Sim/Test_stand/Fe2O3

ダメな場合がある

Fileout Sim/Test_stand/Fe2O3 ! Fe2O3

問題なし

入力ファイルの改行コードは LF でも LF+CR でも OK 出力は windows のときはそれにあわせて LF+CR になる

タグやパラメーターの間には空行を開けなくてもOK

Filout Cu Range -10. 0.2 0. 0.5 10. 1. 40. Radius 3.0

Filout

Cu

Range -10. 0.2 0. 0.5 10. 1. 40.

Radius

3.0

コメント

Filout **! comment** Cu

Range !日本語でもOK -10.0.2 0.0.5 10.1.40.

Radius 3.0

FDMNES

原子番号

1) コンベンショナルなセルで書ける *a, b, c, α, β, γ*

2) 内部座標はセル内での相対座標

FCC Cu

空間群を使った記述も可能

空間群を使って記述	P1 で記述
Spgroup Fm-3m Crystal 3.61 3.61 90. 90. 29 0.0 0.0	Crystal 3.61 3.61 3.61 90.90.90. 29 0.0 0.0 0.0 29 0.5 0.5 0.0 29 0.5 0.5 0.5 29 0.0 0.5

記述方法が異なるだけ 同じ構造なので同じXANESスペクトルが描ける

計算するときには内部的に自動で対称性を探す

空間群を使って記述	P1 で記述
Spgroup Fm-3m	Crystal 3.61 3.61 3.61 90.90.90. 29 0.0 0.0 0.0
Crystal 3.61 3.61 3.61 90.90.90. 29 0.0 0.0 0.0	29 0.5 0.5 0.0 29 0.5 0.0 0.5 29 0.0 0.5 0.5

Total time 10.8 s CPU

Total time 10.7 s CPU

計算するときには内部的に自動で対称性を探す

内部的に作られるクラスター構造が同じ

Filout

Cu

<mark>F</mark>DMNES ではクラスター計算が行われている

Range

-1.0.2 5.0.5 20.1.50.

Radius

3.0

С	rv	st	ta	
C	' y	5	ĽŰ	•

3.613.613.6190.90.90.290.00.00.0290.50.50.0290.50.00.5290.00.50.5

Convolution

構造情報

クラスター半径

End

吸収原子を中心とした半径 (クラスター半径のイメージ図)

分子系の記述は?

Crystal のとき

FDMNES は単位胞を周期的に配置する

Spgroup Fd-3m:1

Crystal 3.567 3.567 3.567 90.90.90. 6.0 0.0 0.0 0.0

Molecule のとき

Molecule

2.16 2.16 2.16 90.90.90. 26 0.0 0.0 0.0 8 1.0 0.0 0.0 8 -1.0 0.0 0.0 8 0.0 1.0 0.0 8 0.0 -1.0 0.0 8 0.0 0.0 1.0 8 0.0 0.0 -1.0

FDMNES での分子の構造作成は

実質的には<mark>分子を含んだ</mark>単位胞の作成となる (ただし、非周期)

(注意) 通常の分子系の構造情報はcartesian で書かれている

PDB形式や xyz 形式などの cell の情報を持たない ファイルフォーマットを元にするときには注意が必要

cell の情報を mesh parameter として用意する FDM計算には mesh parameter が必要

VESTA での分子系の記述

VESTA で PDB などの分子系の構造情報を読んだとき output する方法

×) 直接 POSCAR などの周期系の形式で output する

cif への output は分子の大きさが考慮されて 自動で分子を含む単位胞が作られる

単位胞情報を持った後ならば周期系の形式へ出力が自由に出来る

VESTA では...

1) [File]-[Export Data...] で cif を選び保存する

2) 保存した cif を開く

3) 再度 [File]-[Export Data...] で好きな形式に output する

Crystal Maker では

[Transform]-[Molecule to Crystal] を選択

K	CrystalMaker	File Edi	t Selection	Model	Transform M	leasure	Nindow	Help		L: 10967MB F: 1617MB	
0	.e_xyz	bash	Ni_acac_	_2 — bash	Set View Dire View Along S	ection election	第日 公第日			Users/n	akada/ca
 	.3161 0.37 .4449 0.45 rbium:~/fdmr	otate Arrow M	agnify Bond Dista	nce Bond A	Rotate Auto Rotate		▲ 个策Y	Mi_aca	c_2	ale Zoom Out Zoom In	
	.6187 10.61 .4450 0.83 A .4469 0.68	6,,,		4	Set Scale		¥L ¥R	2		4	6
ر بر بر	$\begin{array}{c c} .4132 & 0.49 \\ .4489 & 0.62 \\ .3815 & 0.47 \\ .5990 & 0.29 \\ \end{array}$				Define Cluste Optimize Rar	er nge					
+• ;	.4833 0.2: .3574 0.2: .2664 0.2:			-	Show Lattice Set Plane Pro	Plane perties	¥/				
	.4471 0.6: .4059 0.4(.6107 0.37				Slice With Lat Insert Space	ttice Plane At Lattice	 Plane				
✓ Ŷ ♦ 90	.3161 0.37 .4449 0.45 rbium:~/fdmr				Generate Bor ✓ Generate Bor	nds Now nds at File	Import				
ب ب ال	x 13 nakada x 30 nakada - 14 nakada - 1 nakada				Move Origin. Transform Ce Discard Symr	 ell metry					
-rw-r	r 1 nakada r 1 nakada				Molecule to (Crystal					
-rw-r -rw-r	r 1 nakada r 1 nakada r 1 nakada				Add Hydroge Relax <mark>Molecu</mark>	ens Ile					
-rw-r drwxr -rw-r	r 1 nakada -xr-x 12 nakada r 1 nakada r 1 nakada		6								
nukuu	uecerblum;~/Tum										

lattice parameter を設定

分子の情報に箱(unit-cell) 加わる

lattice alattice blattice c α β γ PeoB copy

Image: Construction

/tr

data	FeO6				
_audi	t_creation_m	ethod	'genera	ted by Cry	stalMaker 9.2.9'
cell	length_a	20.0	0000(0)		
cell	length_b	20.0	0000(0)		
cell	length_c	20.0	0000(0)		20Åの箱
Fe1	Fe 1.0000	0.5000	0.5000	0.5000	
02	O 1.0000	0.6029	0.5000	0.5000	
03	O 1.0000	0.3971	0.5000	0.5000	
04	O 1.0000	0.5000	0.6029	0.5000	
05	O 1.0000	0.5000	0.3971	0.5000	
06	O 1.0000	0.5000	0.5000	0.6029	
07	O 1.0000	0.5000	0.5000	0.3971	

data Fe0	D6				
_audit_c	reation_m	ethod	'genera	ted by CrystalMaker 9.2.9'	
_cell_len	igth_a	6.1	710(0)		
_cell_len	igth_b	6.1	710(0)		6Aの 箱
_cell_len	gth_c	6.1	710(0)		
Fe1 F	e 1.0000	0.5000	0.5000	0.5000	
02 0	1.0000	0.8334	0.5000	0.5000	
03 0	1.0000	0.1666	0.5000	0.5000	
04 0	1.0000	0.5000	0.8334	0.5000	
05 0	1.0000	0.5000	0.1666	0.5000	
06 0	1.0000	0.5000	0.5000	0.8334	
07 0	1.0000	0.5000	0.5000	0.1666	

クラスター半径と単位胞の関係

- 1) それぞれの分子は、箱の中には収まっている
- 2) クラスター半径を
- 3) AとBの二つの構造の作り方でFDM計算の結果が異なる
- 4) AとBどちらの構造の取り方でもGreen 関数計算だと結果は同じ

※クラスター半径は単位胞内に収まる必要はなく、 半径が大きければ大きいほど精度は上がり、そして計算時間が掛かる。

計算領域によってポテンシャルの扱いが異なる

3つの領域

Appendix

空間群の入力の際の注意 および cif での入力の話
空間群にチョイスがある場合は注意

例) ダイアモンド型構造

Non-Symmorphic Space Group

チョイス1 +部分的並進操作 Symmorphic Space Group

チョイス2

International Tables for Crystallography (2006) から

227, Fd-3m choice 1	Non-Symmorphic Space Group
8aサイト	0,0,0 3/4, 1/4, 3/4
227, Fd-3m choice 2	Symmorphic Space Group
8a サイト	1/8,1/8,1/8 7/8, 3/8, 3/8
Schoenflies Hermann-Maugui *227:1 Oh^7 Fd-3m:1 x,y,z -x+1/4,-y+1/4,-z+1/4 *227:2 Oh^7 Fd-3m:2 x,y,z -y,x+1/4,z+1/4 	in Hall F 4d 2 3 -1d -F 4vw 2vw 3

チョイス1

Crystal 3.567 3.567 3.567 90.90.90. 6.0 0.0 0.0 0.0 6.0 0.75 0.25 0.75

*) チョイスありの H-M 記号で入力

サイト内の原子座標をP1で書く (8*a*サイトなので8つある)

空間群を使っても使わなくても、 同じ構造を記述すれば良い

コードの内部ではその構造の元で、自動で空間群を探して 波動関数や電荷の対称化は行われる。

cif ファイルから直接入力は出来ないの?

FDMNES には cif 入力の機能は実装さていますが、 使わない方が良いです

意図していない構造で計算してしまう可能性があります

- 1) バグが多い(頻繁なアップデートで対処はしてくれて ます)
- 2) cif ファイルは様々なものがある FDMNES が必要としている情報が書いてない cif もあり ます
- 3) occupation が 1.0 以外の場合はモデルの選択を自分で考 えなくてはいけない

原則的には

1) cifファイルを読んで構造を理解すればよい ただし、cif ファイルの中身は実はかなり<mark>複雑</mark>

2) cifが作られた論文を読めば構造情報がわかる

3) cifを VESTA や CrystalMaker で読み込ませる 自分が理解している出力形式へエクスポート

4) FDMNES に対応した構造ツールを使う

(1) 拙作 StructureAnalysisEnvironment (仮) 近日公開予定 (2) pyFDMNES (FDMNES専用の Python Framework)

cif ファイルの一番シンプルな内部構造

TiO₂ Rutile

!!!簡単そうだ!!!

cif ファイル中でのチョイスの記述は? (Hall記号が併記してないcifがある)

Diamond型 C (227,Fd-3m)

_cell_length_a	3.56700
_cell_length_b	3.56700
_cell_length_c	3.56700
_cell_angle_alpha	90
_cell_angle_beta	90
_cell_angle_gamma	90
_symmetry_space_grou	p_name_H-M 'F d -3 m'
_symmetry_Int_Tables_	number 227

実は素のHermann-Mauguin記号なのでチョイスが判らん

対称操作が異なる

よく見ると

チョイス1

チョイス2

loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y+1/2, z+1/2' '-x+1/2, y+1/2, -z' 'x+1/2, -y, -z+1/2' 'z, x, y' 'z+1/2, -x, -y+1/2' '-z, -x+1/2, y+1/2' '-z+1/2, x+1/2, -y' 'y, z, x'

loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' '-x+3/4, -y+1/4, z+1/2' 'x+1/4, y+3/4, -z+1/2' '-x+1/4, y+1/2, -z+3/4' 'x+3/4, -y+1/2, z+1/4' 'x+1/2, -y+3/4, -z+1/4' '-x+1/2, y+1/4, z+3/4' 'z, x, y'

+部分的並進操作

(Non-Symmorphic Space Group)

原理的にはチョイスが見極められるのだが・・・ 手動でチョイスを並進操作を見極めるのがしんどい

一番?簡単な方法としては

Diamond

VESTA or CrystalMaker で対称性を P1 に落とすこと

Phas	e Unit ce	Structur	e parameter	rs Volu	netric data	Crystal shape		Diamonc
mmetry								
Magnetic structur	e							
ystem	No.	Space Group		No. Se	etting			
Molecule	213	P 41 3 2		1 F	d -3 m (Origin	choice 1)		
Custom	214	I 41 3 2		2 F	d -3 m (Origin	choice 2)		
Triclinic	215	P –4 3 m						
Monoclinic	216	F –4 3 m						
Orthorhombic	217	I –4 3 m						
Tetragonal	218	P –4 3 n						
Trigonal	219	F –4 3 c						
Hexagonal	220	I –4 3 d						
Cubic	221	P m –3 m						
	222	P n –3 n						
	223	P m –3 n						
	224	P n –3 m						
	225	F m –3 m					Remov	e symmetry
	226	F m –3 c						
	227	F d –3 m						
	228	F d –3 c						
	229	I m –3 m						
	230	l a -3 d						
Tr	ansform	Customiz	e Upd	late struct	ure parameter	to keep 3D g	eometry 🗘	
Lattice	parameters							
	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)		
	3.56700	3.56700	3.56700	90.000	99.0000	90.0000		
s.u.	0.00000	0.00000	0.00000	0.0000	0.0000	0.0000		
		(Remove sv	mmetry	Y			

対利	対称性なし								
No.	Atom	Label	x	У	z	Occ.	B		New
1	С	С	0.000000	0.000000	0.000000	1	1		Delete
2	С	С	0.000000	0.500000	0.500000	1	1		Delete
3	С	С	0.500000	0.500000	0.000000	1	1		Clear
4	С	С	0.500000	0.000000	0.500000	1	1		
5	С	С	0.750000	0.250000	0.750000	1	1		
6	С	С	0.250000	0.250000	0.250000	1	1		
7	С	С	0.250000	0.750000	0.750000	1	$D1 l = \pm 7$		
8	С	С	0.750000	0.750000	0.250000	1	P11-9 @ (71 F

VESTA

注意) VESTA

VESTA はサイトの代表選手以外を書いても正しく描画する

VESTA や CrystalMaker でサイトを記述するときは 基本、サイトの代表選手のみ記述した方がその後に誤解 が少ない

Diamond

cif ファイルにエクスポートする

_cell_length_a	3.56700	
_cell_length_b	3.56700	
_cell_length_c	3.56700	
_cell_angle_alpha	90	
_cell_angle_beta	90	
cell_angle_gamma	90	
_symmetry_space_gro	up_name_H-M	('P 1')
_symmetry_Int_Tables	_number	1

Diamond

恒等操作のみ

loop_ _symmetry_equiv_pos_as_xyz 'x, y, z'

省略

P1での<mark>内部座標</mark>をゲット!

atom_site_type_symbol								
C	_ 1.0	0.000000	0.000000	0.000000	Biso 1.000000 C			
С	1.0	0.000000	0.500000	0.500000	Biso 1.000000 C			
С	1.0	0.500000	0.500000	0.000000	Biso 1.000000 C			
С	1.0	0.500000	0.000000	0.500000	Biso 1.000000 C			
С	1.0	0.750000	0.250000	0.750000	Biso 1.000000 C			
С	1.0	0.250000	0.250000	0.250000	Biso 1.000000 C			
С	1.0	0.250000	0.750000	0.750000	Biso 1.000000 C			
С	1.0	0.750000	0.750000	0.250000	Biso 1.000000 C			

元素記号

x,y,z

FDMNESを P1の内部座標で記述

Diamond

空間群にチョイスを含んだ cif ファイルは 対称性を除いて P1 にして構造を作るのが間違いない (オススメ)

Crystal

3.567 3.567 3.567 90.90.90. 6.0 0.0 0.0 0.0

- 6.00.00.50.56.00.50.50.0
- 6.0 0.5 0.0 0.5
- 6.0 0.75 0.25 0.75
- 6.0 0.25 0.25 0.25
- 6.0 0.25 0.75 0.75
- 6.0 0.75 0.75 0.25

計算したい 構造をうまく記述する

構造変換 or 構造作成

(構造以外にもFDMNESの各機能にもほぼ対応) Structure Analysis Environment (仮)

(K.NAKADA/JASRI)

-> RMC_POT, FDMNES, 国産コードにも対応
 -> 一部機能がしょぼいので ASEと組み合わせるのが吉

pyFDMNES

Python Framework

http://www.desy.de/2011summerstudents/2013/reports/weigel.pdf.gz

https://github.com/tinaw/pyFDMNES

Winmostar (商用) https://winmostar.com/jp/

モデリングソフト

pyFDMNES の使用例

cif には space group の情報が必要

- 1) numpy, PyCifRW が必要
- 2) setup.cfg を編集(fdmnes_path)
- 3) python setup.py install

sim.P = Paramters()

import fdmnes import os

BaTiO3_Pm3-m
sim = fdmnes.fdmnes("2100863.cif")

Sim.P.Absorber = ('2') sim.P.Range = (-15, 0.5, 50) sim.P.radius = 4.0 sim.P.Rpotmax = 8.50 sim.P.Green = True sim.P.cartesian = False

sim.WriteInputFile("inp.txt", overwrite=True)

inp.txt 作成までの例

```
import fdmnes
import matplotlib.pyplot as plt
```

```
sim = fdmnes.fdmnes("2100863.cif")
```

```
sim.P.Absorber = ('2')
sim.P.Range = (-5, 0.5, 50)
sim.P.radius = 4.0
sim.P.Green = True
sim.P.cartesian = False
```

sim.WriteInputFile("inp.txt", overwrite=True)

```
sim.Run(wait=True)
sim.Status()
data = sim.get_XANES()
plt.plot (data[:,0], data[:,1], label="Green")
```

```
sim.DoConvolution(overwrite=True)
sim.Status()
data_conv = sim.get_XANES(conv=True)
plt.plot (data_conv[:,0], data_conv[:,1], label="convoluted")
```

```
plt.title("XANES with Convolution")
plt.xlabel("Energy")
plt.ylabel("Absorption Cross Section")
plt.legend(loc = 1)
plt.show()
```

pyFDMNESの使用例 計算してプロット

XANES with Convolution

基本出力ファイルの解説 -Phtonenergy を軸とする-

計算ログ(Cu_bav.txt)の中から Edge Energy を取り出す

Cu_bav.txt ファイル中の E_edge という文字がある行を検索

Phtonenergy を軸とするには EFO + Edge Energy Edge エネルギーはFDMの計算ではない。内部テーブル。

Filout		計算結果	果そのものを Phtonenergy で書き出す
	Cu Range -1. 0.2 5. 0.5 20. 1. 50. Energpho Radius 3.0	計算	- Energpho タグを追加して していると初めから Photonenergy で出力
	Crystal	90	
	29 0.0 0.0 0.0	50.	
	29 0.5 0.5 0.0		
	29 0.5 0.0 0.5		
	29 0.0 0.5 0.5		

Convolution

End

	スペース	Cu (Phtonenergy)計算準備
(1)	cd <mark>□</mark> ¥cal	<mark>計算のホームへ</mark> 移動
(2)	mkdir <mark>_</mark> Cu_energpho	Cu_energypho 作業ディレクトリ作成
(3)	cd [_] Cu_energpho	Cu_energypho 作業ディレクトリへ移動
(4)	cp _□ ¥Cu¥fdmfile.txt□.	
(5)	cp□¥Cu¥inp.txt□.	
(6)	start <mark>_</mark> inp.txt (入力ファイル編	<mark>[集) 計算に必要なファイルをコピー</mark>

準備したファイルを確認

ls

≥ Windows PowerShell

PS C:¥cal¥Cu_energpho> <mark>dir</mark>

ディレクトリ: C:¥cal¥Cu_enerspho

ode	LastW	riteTime	Length	Name	
a a	2019/01/23 2019/02/18	13:38 16:20	1174 262	fdmfile.txt inp.txt	

PS C:¥cal¥Cu_energpho>

9027.46. 0.0769741

基本出力ファイルの解説 -Convolution-

Broadening をする前のスペクトルをプロットする

zペース start□.¥Cu.txt

Cu.txt を編集する

最初の2行をコメントアウトする kt - Visual Studio Code 編集(E) 選択(S) 表示(V) 移動(G) デバッグ(D) ターミナル(T) ヘルプ(H) Cu.txt x 9232E-02 -6.5107875E+00 0.000000E+00 1 1 # **B**979.000 1565197E+03 4.7045881E+01 0.000000E+00 9.0366095E-01 4.000000E+00 0.000000E+00 = E_edge, Z, n_edge, j_edge, Abs_before_edge, VO_interstitial, E_c ninitl, ninit1, Epsii, UnitCell Volume, Surface ref, f0 forward, natomsym f, absui Energy <xanes> -1.00000 2.2389267E-02 -0.80000 2.4996353E-02 4 5 -0.60000 2.7615693E-02 6 -0.40000 3.0228930E-02 7 -0.20000 3.2806473E-02

名前を付けて上書き保存

Broadening をする前のスペクトルをプロットする

1) wgnuplot

z~−z 2) plot⊑'Cu.txt'⊡ w⊡l

Cu.txt をプロットする

カンマで区切ることにより複数のデータをプロット

3) plot 'Cu.txt' w l ' Cu_conv.txt' w

4) plot が終わったらGNUPLOTを閉じる
Lorentzian-convolution (畳み込み)

O. Bunau, Y. Joly, J. Phys.: Cond. Mat. 21, 345501 (2009)

O. Bunau, Y. Joly, J. Phys.: Cond. Mat. 21, 345501 (2009

Appendix

Convolution について

Lorentzian-convolution (畳み込み)

O. Bunau, Y. Joly, J. Phys.: Cond. Mat. 21, 345501 (2009

O. Bunau, Y. Joly, J. Phys.: Cond. Mat. 21, 345501 (2009

convolution (畳み込み)

計算後に convolution パラメーターを変えて 再convolution する

現在の Convolution パラメーターを確認

(計算値: convolution スタート)

Cu ディレクトリのしたに ReConvolution ディレクトリを作って convolutin 用の計算をする準備をする

計算後に convolution パラメーターを変えて 再convolution する

スペース

- 1) cd[↓]¥cal¥Cu
- 2) mkdir ReConvolution
- 3) cd_□ReConvolution
- 4) cp_□..¥Cu.txt_□.
- 5) cp□..¥fdmfile.txt□.
- 6) cp□..¥spacegroup.txt□.
- 7) cp□..¥xsect.dat□.
- 8) cp_□..¥inp.txt_□.

Cu の計算結果があるディレクトリへ 再convolution 用のディレクトリ作成

Cu の計算結果をコピーする

計算に必要な基本ファイルのコピー

入力ファイルのひな形をコピー

GNUPLOT用にコメントアウトしていた Cu.txt を元に戻す

Windows PowerShell PS C:¥cal¥Cu> tree /F ¥cal フォルダー パスの一覧 ボリューム シリアル番号は ECO2-77DC です C:¥CAL —Cu Cu.png Cu.txt Cu_bav.txt Cu_conv.txt fdmfile.txt inp.txt spacegroup.txt xsect.dat -ReConvolution Cu.txt fdmfile.txt inp.txt spacegroup.txt xsect.dat

PS C:¥cal¥Cu>

Cu 以下の ReConvolution ディレ クトリで作業しています

自分が作業しているディレクトリ、編集しているファイルの確認 (編集しているファイル、場所は意図しているものものですか?)

PS C:¥cal¥Cu¥ReConvolution>

再Convolution 計算します

Windows PowerShell

PS C:¥cal¥Cu¥ReConvolution> fdmnes_win64.exe

fdmnes_wn64.exe を実行します (64bit windows)

一瞬で計算が終わります

計算後の画面

Windows PowerShell

PS C:¥cal¥Cu¥ReConvolution>

```
PS C:¥cal¥Cu¥ReConvolution> fdmnes win64.exe
   FDMNES II program, Revision 16 December 2015
  Date = 02 01 2016
   Time = 10 h 09 mn 13 s
 Arctangent model
                   5.00, Ecent = 30.00, Elarg = 30.00
    Gamma max =
                  1.55, Efermi = -6.93 eV
    Gamma hole =
                Width_(eV) lambda_(A)
      E (eV)
     -10.000
                   1.550
                               0.000
                   1.551
      -6.600
                            8616.745
      -3.200
                   1.691
                              83.317
                   2.027
       0.000
                              28.573
       3.500
                   2.545
                              15.542
       7.000
                   3.047
                              11.430
                   3.377
      10.000
                               10.073
      14.000
                   3.680
                               9.389
                   3.836
      17.000
                               9.233
                   3.955
                               9.218
      20.000
      24.000
                   4.075
                               9.307
      27.000
                   4.147
                               9.417
                   4.208
                               9.545
      30.000
                   4.278
      34.000
                               9.730
      37.000
                   4.324
                               9.873
      40.000
                   4.367
                               10.016
```

再Convolution 後に出来るファイル

inp.txt 中の Conv_out タグで指定したファイル 再Convolution 結果

Windows PowerShell

ls

PS C:¥cal¥Cu¥ReConvolution> ls

ディレクトリ: C:¥cal¥Cu¥ReConvolution

Mode	LastWr	iteTime	Length Name
-a	2016/01/02	9:52	2979 Cu.txt
-a	2016/01/02	10:11	2755 Cu_conv_2.txt
-a	2016/01/01	10:20	1046 fdmfile.t×t
-a	2016/01/02	9:52	236 inp.t×t
-a	2013/05/06	13:33	89332 spacegroup.txt
-a	2002/07/22	13:33	1135134 xsect.dat

PS C:¥cal¥Cu¥ReConvolution>

'Cu_conv_2.txt' コメントアウト忘れずに

名前を付けて上書き保存

再Convolutionの結果と、それ以前の結果を比較プロット

つ上のディレクトリ

1) wgnuplot

スペース

2) plot ⁱ 'Cu_conv_2.txt' wol, '...¥Cu_conv.txt' wol

スペースカンマ

「max = 1 ~ 9 変化
「hole = 1.55 固定
「max を変化
(「hole は固定値)
後半部分のスペクトルの変化

T_{max} = 15.0 固定 T_{hole} = 1 ~ 5 変化 (F_{max} は規定値のまま) F_{hole} を変化

全体的なスペクトルのボカし

Convolution パラメーターの実験値へのフィット

Metric_out Cu_fit.log

Experiment Cu_K_Cu_foil_Si311_50ms_140625.txt.nor

Gen_shift -20. 20. 100

Parameter

Par_ecent 0. 50. 100. Centra energy for the arctangents Ecent

Energy width for the arctangents

Par_elarg 0. 50. 100.

Par_efermi -10. 10. 100.

Par_gamma_hole 0. 10. 100.

Par_gamma_max 0. 20. 100.

Hole width

Fermi energy

Fhole

Elarg

Efermi

Maximum width for the final states Γ_{max}

化合物の計算実習 -Cu₂Oの計算例-

	スペース
(1)	cd <mark>⊡</mark> ¥cal
(2)	mkdir <mark>_</mark> Cu2O
(3)	cd <mark>□</mark> Cu2O
(4)	cp _□ ¥Cu¥fdmfile.txt _□ .
(5)	cp□¥Cu¥inp.txt□.

Cu₂Oの計算準備 計算のホームへ移動 Cu₂O 作業ディレクトリ作成 Cu₂O 作業ディレクトリへ移動

計算に必要なファイルをコピー

準備したファイルを確認

ls

¥ca I ¥uuzu>

ディレ	レクトリ: C:¥cal¥	Cu2O		
ode	LastW	riteTime	Length	Name
an a		and the second		

現在の状況

Windows PowerShell PS C:¥cal¥Cu> tree /F ¥cal フォルダー パスの一覧 ボリューム シリアル番号は ECO2-77DC です C:¥CAL -Cu Cu.png Cu.txt Cu_bav.txt Cu_conv.txt fdmfile.txt inp.txt -Cu20 Cu20.txt Cu20_bav.txt Cu20_conv.txt fdmfile.txt inp.txt C:¥cal¥Cu>

計算用ディレクトリ(¥cal)の下 Cu と同じ階層に Cu2O ディレクトリ

Cu20 ディレクトリの下に

計算には2つのファイルが必要

Absorber のデフォルトは一番 (何も書かなければ1番を選択したことになる)

クラスター半径 実習では R=5.0 で計算してもらいます

Cu2O (R=5.0 FMS(Muffin-tin)) での計算

fdmnes_win64.exe を実行します (64bit windows) 2.6 GHz Intel Core i5(VMware on Mac) 約15秒

計算終了後のディレクトリを見ると・・・

スペース					
start	Cu2O_conv.txt の編集				
_cc	onv.txt - Visual Studio Code				
コメントアウト (最初の1行)	集(E) 選択(S) 表示(V) 移動(G) デパッグ(D) ターミナル(T) ヘルプ(H) Cu2O.txt ■ Cu2O_conv.txt × 1 # Energy <xanes> -5.00000 2.2964607E-03 3 -4.80000 2.3518105E-03 4 -4.60000 2.4101182E-03 5 -4.40000 2.4716499E-03 6 -4.20000 2.5367073E-03</xanes>				
<mark>start□.¥Cu2O.txt</mark> Cu2O.txtの編集					
	bxt - Visual Studio Code				
	「編集(E) 選択(S) 表示(V) 移動(G) テハック(D) ターミアル(I) ヘルフ(H)				
	≡ Cu2O.txt × ≡ Cu2O_conv.txt				
く (最初の2行)	<pre>1 # 8979.000 29 1 1 1.5499438E-02 -4.6366957E+00 9.1562607E+03 7.7723280E+01 0.0000000E+00 1.028928 0.0000000E+00 = E_edge, Z, n_edge, j_edge, Abs_before ninit1, ninit1, Epsii, UnitCell_Volume, Surface_ref, abs_u_i 2 # Energy <xanes> 3 -5.00000 1.1853009E-01 4 -4.80000 2.1295281E-02 5 -4.60000 2.0980681E-02 6 -4.40000 1.5678094E-03</xanes></pre>				
	7 4 20000 4 20460675 02				

Cu2OのXANESスペクトルのプロット

3) plot が終わったらGNUPLOTを閉じる

FDMNES: FMS(Muffin-tin), R=5.0

Cu-p (LDOS) with hole

遷移確率

$$W(\omega) = \frac{2\pi}{\hbar} \sum_{f} |\langle f | \hat{F} | i \rangle|^{2} \delta(\varepsilon_{f} - \varepsilon_{i} - \hbar \omega)$$
始状態 $|i\rangle = \sum_{mm_{s}} |nlmm_{s}\rangle c_{mm_{s},i}^{(nl)}$ $\phi_{nlmm_{s}} = R_{nlm_{s}}Y_{lm}\sigma_{m_{s}}$
終状態 $|f\rangle = \sum_{LMM_{s}} |LMM_{s}\rangle a_{LMm_{s},f}$ $\phi_{LMM_{s}} = R_{LM_{s}}Y_{LM}\sigma_{M_{s}}$
電気双極子 $\hat{F} = e \mathbf{E} \cdot r = e(E_{x}x + E_{y}y + E_{z}z)$

•••

Γ

$$\propto |I_{Lnl}|^{2} \sum_{m_{s}} w_{j\mu m_{s}} D_{LMm_{s}}(\hbar \omega + \varepsilon_{i})$$
終状態の部分状態密度

部分状態密度
$$D_{LMM_s}(\varepsilon) = \sum_{f} \left| a_{LMM_s,f} \right|^2 \delta(\varepsilon_f - \varepsilon)$$

動径積分 $I_{LM_s,nlm_s}^{(k)}(\varepsilon_f) = \int_{0}^{\infty} R_{LM_s}(r;\varepsilon_f) r^k R_{nlm_s(r)} \cdot r^2 dr$

Cu2OのDOSの計算

'S C:¥cal¥Cu20_dos> dir ディレクトリ: C:¥cal¥Cu20_dos LastWriteTime Length Name lode 3343 Cu20.txt 2019/02/18 19:36 2019/02/18 19:36 2033683 Cu20 bav.txt 2019/02/18 19:36 3024 Cu20 conv.tx1 <u>19:</u>36, 37744 Cu20_sd0.txt 2019/02/18 20272 Cu20_sd2.txt 2019/02/18 19:36 2019/02/18 19:36 37744 Cu2O sd3.txt 37744 Cu20 sd4.txt 2019/02/18 19:36 <u>20272 Cu20_</u>sd5.txt 19:36 2019/02/18 2019/02/18 19:36 37744 Cu2O sd6.txt 2019/02/18 19:36 <u>20272 Cu2O sd7.txt</u> 13:382018/01/23 11/4 fdmfile.txt 2019/02/18 19:35 488 inp.txt 出力ファイルが追加されている S C:¥cal¥Cu2O_dos≻

FDMNES のバージョンの違いによって挙動が違うので注意

前回2016の実習のVer

今回の 実習の Ver

2016.01.08

4096	Jan	8	19:22	•
4096	Jan	8	17:30	••
2876	Jan	8	17:32	Cu20.txt
1344709	Jan	8	17:32	Cu20_bav.txt
2652	Jan	8	17:32	Cu20_conv.txt
34272	Jan	8	17:32	Cu20_sd0.txt
34272	Jan	8	17:32	Cu20_sd1.txt
18360	Jan	8	17:32	Cu20_sd2.txt
15777	' Jan	8	17:12	XAS.pdf
1174	Jan	7	11:28	fdmfile.txt
491	Jan	8	17:24	inp.txt
89332	May	6	2013	<pre>spacegroup.txt</pre>
1135134	Jul	22	2002	xsect.dat

2016.06.23 ~

2970	1	8	17:16	Cu20.txt
1313782	1	8	17:16	Cu20_bav.txt
2652	1	8	17:16	Cu20_conv.txt
34272	1	8	17:16	Cu20_sd0.txt
18360	1	8	17:16	Cu20_sd2.txt
34272	1	8	17:16	Cu20_sd3.txt
34272	1	8	17:16	Cu20_sd4.txt
18360	1	8	17:16	Cu20_sd5.txt
34272	1	8	17:16	Cu20_sd6.txt
18360	1	8	17:16	Cu20_sd7.txt
- 15777 -	-1	8	17:12	XAS.pdf
1174	1	7	11:28	fdmfile.txt
491	1	8	17:15	inp.txt

この変更はとても大きいのに Change.log にも書いてない!

新: FDMNES 2016.06.23 ~

(*) _bav.txt の情報はどこにも公開されてないので確定情報ではない

新: FDMNES 2016.06.23 ~

元になった結晶の通し番号(igr)

									SC	:0b	Z=29 (Cu)
ia	Ζ	it	igr	ipr	iap	posx	posy	posz	S	12.	7=8 (O)
1	29	0	1	0	1	0.00000	0.00000	0.00000		12. 10	
2	8	2	5	2	3	0.00000	0.00000	1.84793	SC	13:	Z=29 (Cu)
3	29	1	2	1	4	3.01765	0.00000	0.00000	so	:4	Z=29 (Cu)
4	29	1	4	1	14	1. 50882	0.87112	2. 46390	s	d5:	Z=8 (O)
5	8	2	6	2	20	0.00000	3.48448	0.61598			= 20(0)
6	29	1	1	1	25	0.00000	3.48448	2.46390	SC	10:	Z=29 (Cu)
7	8	2	6	2	33	3.01765	1.74224	3. 07988	SC	d7:	Z=8 (O)

クラスター原点(吸収原子)からの距離別

旧: FDMNES ~2016.06.23

元になった結晶で対称性での分類番号(ipr)

元になった結晶の通し番号(igr)

	- Atc	om_	_sel	ec												
Rs nx nz	sort <= 2	= 25 1e =	4.6	51 / igi	A	= 17 Clus	ster comr	n = T. Clust	ter m	128 =	F				Absor	ber
No	o Ful	I_at	tom	n m	ode	27, 0140	oo mp			140	•					
ia	Z	it	igr	ipi	r ja	p posx	posy	posz	igrp	t PtG	rNai	me	Comp			
1	29	0	1	0	1	0.00000	0.00000	0.00000	17	-3	Т	Т	F		sd0	Cu*
2	8	2	5	2	3	0.00000	0.00000	1.84793	16	3	Т	Т	F		sd2	0
3	29	1	2	1	7	3.01765	0.00000	0.00000	1	1	Т	F	F		sd1	Cu
4	29	1	2	1	12	0.00000	1.74224	2.46390	1	1	Т	F	F			Cu
5	8	2	6	2	21	3.01765	1.74224	0.61598	1	1	Т	F	F			
6	29	1	1	1	27	3.01765	1.74224	2.46390	1	1	Т	F	F			
7	8	2	6	2	31	0.00000	3.48448	3.07988	1	1	Т	F	F			

O原子のLDOSは Cu2O_sd2.txt ファイルに記述される 元構造では5番目の原子

sd0 (Cu) と sd2 (O) をプロットする

start .¥Cu20_sd0.txt

Cu2O_sd0.txtの編集

名前を付けて上書き保存

start .¥Cu20_sd2.txt

Cu2O_sd2.txtの編集

名前を付けて上書き保存

zペース start□.¥Cu2O_conv.txt

Cu2O_conv.txt の編集

onv.txt - Visual Studio Code

編集(E) 選択(S) 表示(V) 移動(G) デバッグ(D) ターミナル(T) ヘルプ(H) コメントアウト ≣ Cu2O_sd0.txt ≣ Cu2O_sd2.txt ≡ Cu2O conv.txt × ≡ inp.txt (最初の1行) 1 # Energy <xanes> -5.00000 2.2964607E-03 -4.80000 2.3518105E-03 З. -4.60000 2.4101182E-03 4 -4.40000 2.4716499E-03 5 -4.20000 2.5367073E-03 6 -4.00000 2.6056334E-03 7 8 -3.80000 2.6788206E-03 -3,60000 2,7567205E-03 9 -3.40000 2.8398559E-03 10 -3.20000 2.9288369E-03 11 -3.00000 3.0243807E-03 12 -2.80000 3.1273384E-03 13 -2.60000 3.2387296E-03 14 15 -2.40000 3.3597898E-03 16 -2.20000 3.4920349F-03 47 1 00000 > 62726406 02

名前を付けて上書き保存

GNUPLOT でプロットするフェルミレベルを0にする 1) wgnuplot スペース 2) plot Cu2O_sd0.txt'ouo1:7-wolot o'Cu-p'

※**旧version(2018.11.30)** 公式マニュアル p.38

Then one gets a new output file with the extension <u>sd0.txt</u>. It contains, in column, first the integral of the total atomic electron density, then the density and its integral of each (I,m) followed by the sum over m, that is the density and its integral for each I. For magnetic calculation, the expansion is split between the "up" and "down" components. By default, real harmonics are used because they are directly the familiar px, py, pz, dxy, dxz... states. The correspondence is the following:

	(0,0)	(1,-1)	(1,0)	(1,1)	(2,-2)	(2,-1)	(2,-0)	(2,1)	(2,2)
	S	p _y	pz	px	d _{xy}	dyz	d _{z²}	d _{xz}	$d_{x^2-y^2}$
;d0	.txt - Visual	Studio Code							
編	≢(Ε) 選択(S) 表示(V) 移動	访(G) デバッグ(D)) ターミナル(T)	ヘルプ(H)				
=	inp.txt	≡ Cu2O	sd0.txt ×	≣ Cu2O sd2	2.txt				_
	1 1	Enongy	$T_{n+} + 2$	3	Intr/0	4	5 (1)	$\frac{6}{1}$	7
	- 1)	Intn/1	-1) n(1	(0,0) (0) Tr	tn(1.0)	$n(1 \ 1)$	0) [10 [] Intn(1	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	(1) 12
	-1) [Tr	$\frac{1}{1}$	n(2 - 2)	Tntn(2	-2) n(2	-1) T	ntn(2 - 1)	n(2.0)	(-) 13
	Intr	(2.0) n	(2,1)	Intn(2.1)	n(2.2)	J Intr	(2,2) n	1(2)	Intn 1
	(2)		(-)-/	(-,-/			(-)-/		
	2	5.0000 3.14	4353E-02 (5.56653E-03	9.65262E	-05 1.313	31E-02 1.9	93052E-04	
	9	.19150E-03	7.63137E-0	95 6.68868	E-01 9.83	218E-03 5	.19150E-03	7.63137E	-05
	1	.35850E+00	1.99696E-0	2.39657	'E-02 3.52	289E-04 1	.20489E-01	1.77116E	-03
	9	.45215E-02	1.38944E-0	3 1.20489	E-01 1.77	116E-03 2	.39657E-02	3.52289E	-04
		.66862E-01	1.12727E-0	32				12	、n動計

新version(2022.6.15)公式マニュアル p.40(Densityの項目)

Then one gets a new output file with the extension <u>sd0.txt</u>. (if the absorbing atom is excited) or <u>sd1.txt</u> in the other case. By default they are expressed using the cubic harmonics, that is: s, px, py, pz, dx2-y2, dz2... For magnetic calculation, the expansion is split between the "up" and "down" components.

順番が変わっていることに注意!

旧ver.に<u>近い</u>表示(例えば、py,pz,px)にするには、 Harm_tess を追加する。

7 —> p軌道

complex spherical harmonics

$$Y_{l}^{m}(\theta,\phi) = (-1)^{(m+|m|)/2} \sqrt{\frac{2l+1}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}} P_{l}^{|m|}(\cos\theta) e^{im\phi}$$

real spherical harmonics

$$Y_{lm} = \begin{cases} \frac{i}{\sqrt{2}} \left(Y_l^m - (-1)^m Y_l^{-m} \right) & \text{if m} < 0 \\ Y_{lm} = \begin{cases} Y_l^m & \text{if m} = 0 \\ \frac{1}{\sqrt{2}} \left(Y_l^{-m} + (-1)^m Y_l^m \right) & \text{if m} > 0 \end{cases}$$

FDMNES	orbital	real spherical complex spherical harmonics
n(1,-1)	p_y	$Y_{1-1} = \frac{l}{\sqrt{2}} \left(Y_1^{-1} + Y_1^1 \right)$
n(1,0)	p_z	Y_{10} $^{\sqrt{2}}$
n(1,1)	p_x	$Y_{11} = \frac{1}{\sqrt{2}} \left(Y_1^{-1} - Y_1^1 \right)$
n(2,-2)	$d_{_{xy}}$	$Y_{2-2} = \frac{i}{\sqrt{2}} \left(Y_2^{-2} - Y_2^2 \right)$
n(2,-1)	$d_{_{yz}}$	$Y_{2-1} = -\frac{i}{\sqrt{2}} (Y_2^{-1} + Y_2^1)$
n(2,0)	$d_{3z^2-r^2}$	V_{20} V_{2}
n(2,1)	$d_{_{xz}}$	$Y_{21} = \frac{1}{\sqrt{2}} \left(Y_2^{-1} - Y_2^1 \right)$
n(2,2)	$d_{x^2-y^2}$	$Y_{22} = \frac{1}{\sqrt{2}} \left(Y_2^{-2} + Y_2^2 \right)$

4) plot が終わったらGNUPLOTを閉じる

化合物の計算実習 -BaTiO3の計算例-

Absorber

1

Filout

BaTiO3

Range

-10. 0.2 0. 0.5 10. 1. 45.

Edge

Κ

Convolution

Green

Radius

4.0

Crystal

4.0060 4.0060 4.0060 90.0000 90.0000 90.0000 22 0.0000 0.0000 0.0000 ! Ti 56 0.5000 0.5000 0.5000 ! Ba 8 0.5000 0.0000 0.0000 ! O 8 0.0000 0.5000 0.0000 ! O 8 0.0000 0.0000 0.5000 ! O

End

cubic, 221, Pm3-m 常誘電相 cif_2100863

計算時間 VMware on Mac

CPU: Intel Core i5-4258U 2.6G

single process (using MUMPS)

実習では

1) MT近似の FMS(green関数)を用いる 2) R=4.0 Å

FDM だとR5だと 1h かかってしまう。

BaTiO3_Pm3-m

fdm_R3 : 5.7s fdm_R4 : 36.4s fdm_R5 : 49.7s green_R3 : 4.0s green_R4 : 25.0s green_R5 : 57.1s

BaTiO3_R3m

fdm_R3 : 253.3s fdm_R4 : 2738.3s fdm_R5 : 4403.4s (1h13min) green_R3 : 6.7s green_R4 : 42.4s green_R5 : 271.4s

(7) fdmnes_win64.exe

Windows PowerShell

PS C:¥cal¥BaTiO3_Pm3-m> fdmnes_win64.exe

2.6 GHz Intel Core i5 (VMware on Mac) 約86秒

計算結果作られるファイル

BaTi03.txt BaTi03_bav.txt BaTi03_conv.txt BaTi03_sd0.txt BaTi03_sd2.txt BaTi03_sd3.txt BaTi03_sd3.txt BaTi03_sd5.txt XAS.pdf fdmfile.txt inp.txt ---- Atom_selec -

Rsort = 3.467 A
nx = 19
natome = 5, igrpt = 8, Cluster_comp = F, Cluster_mag = F
Full_atom mode

	ia	Ζ	it	igr	ipr	iap	posx	posy	posz	igrpt	PtGrName	Comp	Axe	Mag
	1	22	0	1	0	1	0.00000	0.00000	0.00000	Ti	mmm	F	Т	F
ſ	2	8	3	3	3	5	0.00000	0.00000	2.00180	6	mm	F	Т	F
	3	8	3	5	3	6	0.00000	2.00180	0.00000	0	mm	F	F	F
	4	8	3	4	3	7	2.00180	0.00000	0.00000	6	mm	F	F	F
ľ	5	56	2	2	2	15	2.00180	2.00180	2.00180	Ва	1	F	F	F

OLD 2016.01.08

2979 1991403 2754 34374 55590 18462 1046	BaTiO3.txt BaTiO3_bav.txt BaTiO3_conv.txt BaTiO3_sd0.txt BaTiO3_sd2.txt BaTiO3_sd3.txt fdmfile.txt
470	inp.txt

NEW 2016.06.23 ~

BaTi03.txt BaTi03_bav.txt BaTi03_conv.txt BaTi03_sd0.txt BaTi03_sd0.txt BaTi03_sd2.txt BaTi03_sd3.txt BaTi03_sd4.txt BaTi03_sd5.txt XAS.pdf fdmfile.txt

.

sd0 (Ti) sd3 (O)

GNUPLOT でプロットする

1) wgnuplot スペース

2) plot 'BaTiO3_conv.txt' uu1:2 wul

強誘電相の計算準備

スペース

* アスタリスク

- (1) cd<mark>□</mark>¥cal
- (2) mkdir BaTiO3_R3m
- (3) cd_BaTiO3_R3m
- (4) cp_□..¥BaTiO3_Pm3-m¥*_□.
- (5) rm□BaTiO3*.txt
- (6) start<u>inp.txt</u>

Absorber 1 強誘電相
Filout BaTiO3
Range -10. 0.2 0. 0.5 10. 1. 40.
Estart -13
Edge K
Radius 4.0
Density state_all
Green Crystal 4.0036 4.0036 4.0036 90.0 90.0 90.0 22 0.4880 0.4880 0.4880 !Ti 56 0.0000 0.0000 0.0000 !Ba 8 0.5116 0.5116 0.0195 !O 8 0.0195 0.5116 0.5116 !O 8 0.5116 0.0195 0.5116 !O
Convolution 内部座標の歪みを入れる
End

(7) fdmnes_win64.exe

Windows PowerShell

PS C:¥cal¥BaTiO3_R3m> fdmnes_win64.exe

2.6 GHz Intel Core i5 (VMware on Mac) 約15秒

ls

計算結果作られるファイル

BaTi03.txt BaTi03_bav.txt BaTi03_conv.txt BaTi03_sd0.txt BaTi03_sd2.txt BaTi03_sd3.txt BaTi03_sd4.txt BaTi03_sd5.txt BaTi03_sd6.txt BaTi03_sd7.txt **XAS.pdf** fdmfile.txt inp.txt ---- Atom_selec -----

Rsort = 3.550 A nx = 20 natome = 7, igrpt = 16, Cluster_comp = T, Cluster_mag = F Full_atom mode

i	а	Ζ	it	igr	ipr	iap	posx	posy	posz	igrpt	PtGrName	e Comp	Axe	Mag
	1	22	0	1	0	1	0.00000	0.00000	0.00000	Ti	3	Т	Т	F
	2	8	3	3	3	2	0.00000	1.60864	-0.97383	0	1	Т	F	F
	3	8	3	4	3	7	1.43785	0.83014	1.33765		1	Т	F	F
Г	4	56	2	2	2	8	0.00000	0.00000	-3. 38401		3	Т	Т	F
	5	56	2	2	2	10	2.83097	1.63446	-1.07253	Dd	1	Т	F	F
	6	56	2	2	2	14	0.00000	3. 26893	1.23895	Ba	TiO3 + v+	т	F	F
	7	56	2	2	2	15	0.00000	0.00000	3.55043		TiO3 hav	$P_{\mathbf{x}+\mathbf{x}}$	Т	F
										Ba	TiO3 conv	.txt		
										Ba	Ti03 sd0.	txt		
										Ba	Ti03 sd2.	txt		
										Ba	Ti03_sd3.	txt	sdC) (Ti
										Ba	TiO3_sd4.	txt		
										Ba	TiO3_sd5.	txt	SQC	S (U)
										Ba	TiO3_sd6.	txt		
										Ba	TiO3_sd7.	txt		
										XA	S.pdf			
										fd	mfile.txt			
										in	p.txt			

start #BaTiO3_conv.txt

スペース

BaTiO3_conv.txt の編集

	ᅴ ᅬᆞᆞ ᆞ ᄀ ᅳ ᆞ	BaTiOS conv.txt ×	BaTiO3_sd0.txt <xanes></xanes>	≣ BaTiO3_sd3.txt		
スペース	コメントアウト (最初の1行)	2 3 -13.0000 3 -12.5000 4 -12.0000 5 -11.5000 6 -11.0000 7 -10.5000 8 -10.0000	3.2811484E-04 3.3694318E-04 3.4625391E-04 3.5609040E-04 3.6650186E-04 3.7754442E-04 3.8928255E-04			
start .¥Ba	TiO3_sd0.txt		BaTiO3_sd0	.txt の編集		
(Ti) スペース	コメントアウト (最初の1行)	<pre>BaTiO2_conv.txt 1 # Energy 1) I Intn_1(2 Intn(2,0) (2) 2 -10.000 2.32842</pre>	<pre></pre>	<pre>BaTiO3_sd3.txt (0,0) Intn(0,0 Intn(1,0) Intn(2,-2) n(2, tn(2,1) n(2,2) B302E-04 3.79697E-0 2.37887E-04 3.4968</pre>) n_l(0) n(1,1) I -1) Intn(2 Intn(2,2) 06 5.16604E-04 7E-06 2.32842	Intn_1(0) otn(1,1) n_1 ,-1) n(2,0) n_1(2) 4 7.59394E-06 E-04 3.42271E-
start .¥Ba	TiO3_sd3.txt		BaTiO3_sd3	.txt の編集		
(O)	コメントアウト((最初の1行)	<pre>BaTiOS_conv.txt 1 # Energy -1) Int Intn_1(1) 2 -10.0000 3.24073E- 1.75390E-</pre>	<pre>■ BaTiO3_sd0.txt Int_t n(0 n(1,-1) n(1,0) 2.81980E-04 8.218 03 4.76379E-05 2. 02 2.57818E-04</pre>	<pre></pre>	n_l(0) n(1,1) Int 1.64372E-03 -05 2.62030E-	Intn_1(0) n(1,1) n_1(1 2.41623E-05 03 3.85177E-05

GNUPLOT でプロットする

1) wgnuplot

スペース

コロン

2) plot BaTiO3_conv.txt' uu1:2 wul

3) plot が終わったらGNUPLOTを閉じる

4) plot が終わったらGNUPLOTを閉じる

4) plot が終わったらGNUPLOTを閉じる

常誘電相(Pm3-m)

「こうもい」」

$$H = H_d + H_p + V$$

$$\sum E_d = E_d \psi_d + c_p \psi_p$$

$$H = H_d + H_p + V$$

$$\psi = c_d \psi_d + c_p \psi_p$$

$$H = H_d + H_p + V$$

$$\psi = c_d \psi_d + c_p \psi_p$$

$$H = H_d + H_p + V$$

$$\psi = c_d \psi_d + c_p \psi_p$$

$$H = H_d + H_p + V$$

$$\psi = c_d \psi_d + c_p \psi_p$$

$$H = H_d + H_p + V$$

$$\psi = c_d \psi_d + c_p \psi_p$$

$$H = H_d + H_p + V$$

$$\psi = c_d \psi_d + c_p \psi_p$$

$$H = H_d + H_p + V$$

$$\psi = c_d \psi_d + c_p \psi_p$$

$$H = H_d + H_p + V$$

TT

on-siteで Ti の p 軌道 と d 軌道は混成しない

T 7

強誘電相(R3m)

反転対称性がない場合

on-siteで Ti の p 軌道と d 軌道は混成する

奇関数

E1E1 遷移(dipole-transition) でも対称性の破れにより pre-edge が育つ

22	0.5000	0.5000	0.5000	! Ti
56	0.0000	0.0000	0.0000	! Ba
8	0.5000	0.5000	0.0000	!0
8	0.0000	0.5000	0.5000	!0
8	0.5000	0.0000	0.5000	! O

Tiの内部座標を x,y,z 方向ΔだけシフトさせたときのXANES

多極子展開

デフォルトは Dipole transition

Quadrupole	(E1E2 and E2E2)
Octupole	(F1F3 and F3F3)
Dipmag	
E1E2	(E1M1) and (M1M1)
E1E3	
E2E2	
E3E3	
E1M1	
M1M1	
No_E1E1	
No_E2E2	
No_E1E2	
No_E1E3	

Absorber	
1	
Filout BaTiO3	
Range -15. 0.2 0. 0.5 10. 1. 45.	
Quadrupole	
Edge K 四極	全展開を考慮した計算
Convolution	
Green	
Radius 5.0	
Crystal 4.0060 4.0060 4.0060 90 22 0.0000 0.0000 0.0000 56 0.5000 0.5000 0.5000 8 0.5000 0.0000 0.0000 9 8 0.0000 0.5000 0.0000 9 8 0.0000 0.5000 0.5000 9	0.0000 90.0000 90.0000 ! Ti ! Ba O O
End	

パラメーターの参照スペクトルへのフィット ~FeO6を例題として~

FeO6 (Fit無し:NoFit)

Filout

FeO6_NoFit

FeO6 (Fit有り:Fit)

- (1) cd ¥cal
- (2) mkdir FeO6_Fit
- (3) cd FeO6_Fit
- (4) cp ..¥Cu¥fdmfile.txt .
- (5) cp ¥fdmnes¥Sim¥Test_stand¥in¥FeO6*.
- (6) mv FeO6_inp.txt inp.txt
- (7) start inp.txt
- (8) fdmnes_win64.exe

2	Windows PowerShell	×	+ ~						
	Gamma_max = Gamma_hole = E_(eV) -10.000 0.000 2.000 8.000 14.000 20.000 26.000 32.000 38.000 44.000 50.000 56.000 62.000 68.000 74.000 80.000	16.20, 1.25, Width_(eV 1.250 1.250 1.291 1.907 3.338 5.584 8.024 9.894 11.148 12.006 12.630 13.108 13.490 13.805 14.071 14.299	Ecent = 3 E_cut = 0 V) lambda_(0.000 210.127 19.489 7.668 4.316 3.112 2.683 2.536 2.536 2.536 2.536 2.578 2.626 2.677 2.730	0.00, E .000, S A)	Elarg = Shift =	30.00	eV		
C	Calculation with gamma_max = abc =	optimiz 16.198 -4.539	ed paramete 14, 15,	rs:					
PS	D1 = 2.625983 Rx = 1.209814 S C:\cal\Fe06_Fi	8, genera 9, genera 1, t>	al shift = al shift =	-5.1 -5.2	40 eV, 20 eV	up	to now,	best	value
								_	

フィッティングの結果はFeO6_Fit_fit.txtに出力されている。

Filout FeO6_Fit

Range

-2. 0.1 2. 0.2 5. 0.5 20. 1. 50. 2. 80.

Radius 3.0

Green

Molecule 2.16 2.16 2.16 90. 90. 90. 26 0.0 0.0 0.0 8 1.0 0.0 0.0 8 -1.0 0.0 0.0 8 0.0 1.0 0.0 8 0.0 -1.0 0.0 8 0.0 0.0 1.0 8 0.0 0.0 -1.0

Convolution

Estart -10.

Experiment FeO6_exp.txt

Gen_Shift -62. 21	Minimum and maximum energy shift between calculation and experiment and number of value to test
Parameter	General contraction or expansion in %
-10. 0. 3.	Minimum, Maximum, NumberOfValuesToTest
Parameter	Maximum width for the final states
Par_Gamma	_max T
10. 15. 3	Minimum, Maximum, NumberOfValuesToTest

実験スペクトルとの比較

- (1) (FeO6_Fit_conv.txtの一行目に#)
- (2) wgnuplot
- (3) plot 'FeO6_Fit_conv.txt' u (\$1-5.40):(\$2*35) w l t 'Fit'
- (4) replot '..¥FeO6_NoFit¥FeO6_NoFit_conv.txt' u (\$1-5.40):(\$2*35) w l 'NoFit'
- (5) replot 'FeO6_exp.txt' u 1:2 t 'Exp'

Calculation with gamma_max = abc =	optimized parameters: 16.19814, -4.53915,
D1 = 2.625983	, general shift = -5.40 eV,

0.000000000

0.000000000

0.0000000000

1.000000000

-1.0000000000

0.0000000000

0.0000000000

Тур

222222

Ζ

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

1.0000000000

-1.0000000000

計算スペクトルのファイルは、	フィッティング後のパラメータが使用されている。

Ζ

26

8

8

8

8

8

8

Х

0.0000000000

1.0000000000

-1.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

新version(2022.6.15) 公式マニュアル p.68

The parameters can be fitted are: For the convolution:

Par_ecent	\rightarrow Central energy for the arctangent
Par_elarg	→ Energy width for the arctangent
Par_efermi	→ Fermi (or cutting) energy
Par_gamma_hole	\rightarrow Hole width
Par_gamma_max	→ Maximum width for the final states
Par_gauss	→ Gaussian width (or resolution)
Par_shift	→ Energy shift
Par_weight	\rightarrow weight
Par_weight_co	\rightarrow weight for the average weight between 2 sets of calculated spectra
Par_aseah	→ First parameter of the Seah-Dench formula
Par_abs_u_iso	→ Mean square displacement of the absorbing atoms

For the spectra calculation:

Par_a	\rightarrow Contraction or expansion of the mesh parameter a in %
Par_b	→ Contraction or expansion of the mesh parameter b in %
Par_c	\rightarrow Contraction or expansion of the mesh parameter c in %
Par_abc	→ General contraction or expansion in %
Par_anga	\rightarrow Value of the unit mesh angle α
Par_angb	\rightarrow Value of the unit mesh angle β
Par_angc	\rightarrow Value of the unit mesh angle γ
Par_poporb	→ Orbital occupancy
Par_posx	\rightarrow Atom position along x
Par_posy	\rightarrow Atom position along y
Par_posz	\rightarrow Atom position along z
Par_occup	\rightarrow occupancy of the atom
Par_dposx	\rightarrow shift of the atom position along x from the original position
Par_dposy	\rightarrow shift of the atom position along y from the original position
Par_dposz	\rightarrow shift of the atom position along z from the original position
Par_theta	\rightarrow position along θ for an atom in spherical coordinate
Par phi	\rightarrow position along ϕ for an atom in spherical or cylindrical coordinate
Par v helm	→ Helmholtz potential
Par_delta_hel	\rightarrow Distance of the Helmholtz layer from the topmost atom layer
Par_width_he	$l \rightarrow$ Width of the Helmholtz layer

新version(2022.6.15) 公式マニュアル p.68

Under each parameter must be written the first and last values of the parameter followed by the number of values. For the parameters *Par_posx*, *Par_posy*, *Par_posz*, *Par_theta*, *Par_phi*, the number of the atom must also be specified in fourth position. Under the parameter

いちいち、ParameterおよびPar_dposxのタグを付ける必要がある。

※試行パラメータ数が増えると、その分だけスペクトル計算を内部で行うため、 計算に時間が掛かることに注意。 Have a beautiful day !

Appendix

計算時間

基底関数の大ざっぱな特徴

*) メモリは今回の実習では1Gも使いません

参考) 産業利用に役立つ第一原理計算コードの選び方

http://www.spring8.or.jp/ext/ja/iuss/htm/text/15file/computational_science/1st/5.nakada.pdf

1-node Xeon E5-2667 v2 (3.3GHz) DDR3-1866 16x16

> node: 2ノード CPU: <mark>32core</mark> メモリ: 512G

計算速度(だけ)比較、基本はほぼデフォルト値で テスト(基底とかカットオフとかの比較を考えるといい加減)

16core	WIEN2k	VASP (high)	PWscf	OpenMX band	OpenMX cluster	GPAW PW	GPAW LCAO	СР2К
YTiO₃ (k:444)	867.01	170.646		311.524		58.881	642.071	
Brookite (k:997)		478.646		1096.748	201.735	434.355		
C60 (k:111)	42590.01	74.388		19.267	18.64		20.367	
Graphene 1x1x1 (k:24241)	155.584	6.148		11.635	10.276	327.155	8.319	
H2O mol	64223.02	8.581		6.086				
Methane		5.651		5.295	4.896	56.252 (1core)		
Nitro Benzene		59.518		14.911	7.585			

Allsite モード

内容は 2015.01.05 版で検証

もし、

Absorber 1 allsite

site 1 で対称性でグルーピングされたサイトを すべて計算する

対称性が低ければ、普通一つだけになるので 実質的には absorber 原子だけの計算になる むしろ allsite のみで計算したほうがよい(時間はかかる)

	ipr = 1, Z = 46, natomsym = 1
	igr posx posy posz sym code 1 0.50000 0.50000 0.50000 E 1
	Ipr = 2, 2 = 46, hatomsym = 2
同ーサイト内の結びつけらた2つの原子 (中身は同じ結果になる)	igr posx posy posz sym code 2 0.50100 0.49950 0.63220 E 1
Pd6 atom1 2.txt	3 0.50100 0.63220 0.49950 a_011 43
Pd6_atom2_2.txt	ipr = 3, Z = 46, natomsym = 1
	igr posx posy posz sym code 4 0.50200 0.63180 0.63180 E 1
全部で5つのサイト	ipr = 4, Z = 46, natomsym = 1
	igr posx posy posz sym code
	5 0.59480 0.56520 0.56520 E 1
Pd6_atom1_1.txt	
Pd6_atom1_2.txt	ipr = 5, Z = 46, natomsym = 1
Pd6_atom2_2.txt Pd6_atom1_3.txt Pd6_atom1_4.txt	igr posx posy posz sym code 6 0.40740 0.56660 0.56660 E 1
Pd6_atom1_5.txt	

*_bav.txt の最後 Convolution は site1 で行っている (default absorber で convolution する)

---- Convolution -----

Arctangent model Gamma_max = 15.00, Ecent = 30.00, Elarg = 30.00 Gamma_hole = 7.94, Efermi + Shift = -5.08, site 1

Pd6_1.txt	
Pub_1_sub.ixi Pd6_1_sd2_txt	default absorber 以外では
$Pd6_1 sd3.txt$	convolution されてないので注意
Pd6 1 sd4.txt	
••	
Pd6_5.txt	
Pd6_5_sd0.txt	
Pd6_5_sd2.txt	
Pd6_5_sd3.txt	
Pd6_5_sd4.txt	
Pd6_atom1_1.txt	
Pd6_atom1_2.txt	
Pd6_atom1_3.txt	
Pd6_atom1_4.txt	
Pd6_atom1_5.txt	
Pd6_atom2_2.txt	
Pd6_bav.txt 🛛 🗲	全体のロク
Pd6_conv.txt	default absorber での convolution

計算後に convolution する

Pd3 1.txt Pd3_1.txt Pd3_1_conv.txt Pd3_1_sd0.txt Pd3_1_sd0.txt Pd3_1_sd2.txt Pd3_1_sd2.txt Pd3_1_sd3.txt Pd3_1_sd3.txt conv.inp conv.inp fdmfile.txt (<--- conv.inp を読むように修正) fdmfile.txt spacegroup.txt spacegroup.txt xsect.dat xsect.dat

 ! Main indata file for fdmnes Calculation Pd3_1.txt 	注意) 同一ディレクトリ内だと Calculation名_conv.txt ではダメ					
Conv_out ! To specify an output file name Pd3_1_conv.txt Convolution						
End						

allsite 時には

1) FDmakeConvAllsite.py を実行 conv*.inp fdmfile.txt 作成 2) fdmnes 実行 fdmfile.txt にもとづき conv*.inp の数だけ Convolution を行う 3) FDplot xas.py -i conv.inp -a 1 2 3 4 5 -a オプションで引いた site の平均のXAS をプロット&EPS化 さらに、* 0 conv.txt に平均のデーターを出力

INP name = read_pdb.inp						
TEXT name = Pd6_1						
average mode						
sum : Pd6_1_conv.txt						
sum : Pd6_2_conv.txt						
sum : Pd6_3_conv.txt						
sum : Pd6_4_conv.txt						
sum : Pd6 5 conv.txt						

INP FILE = read_pdb.inp (.inp)
DATA FILE (filout) = Pd6 (.txt)
BAV FILE (filout) = Pd6 (_bav.txt)

デフォルトで読み込む read_pdb.inp からの filout 情報のファイルが読めないと プログラムが止まるので、 実際に読めるファイルの -t (生データ) ファイルを与える

かつ 平均化モードならば

指定したファイルの連番ファイルが平均される

```
allsite 時にサイトごとのプロット
```

```
1) 2) fdmnes 実行までは同じ
```

```
3) FDplot_xas.py -a 1
or
3) FDplot_xas.py -i conv*.inp
convolution に用いた conv*.inp ファイルを読み込む
とその inp に対応した plot をする
```

allsite 時にサイトごとの直接プロット

Pd6 1 sd4.txt Pd6 4 conv.txt Pd6 atom1 5.txt conv 1.inp 1 Pd6 2.txt Pd6 4 sd0.txt Pd6 atom2 2.txt conv 2.inp CONTCAR Pd6 FDmakeCconvAllsite.py Pd6 2 conv.txt Pd6 4 sd2.txt Pd6 bav.txt conv 3.inp FDplot_XAS.py Pd6_2_sd0.txt Pd6_4_sd3.txt Pd6_conv.txt conv_4.inp Pd6_2_sd2.txt Pd6_4_sd4.txt ReadFdm.py conv 5.inp FDplot XASs.py ReadFdmBav.py fdLDOS0 specified.py MY PYTHON Pd6 2 sd3.txt Pd6 5.txt Pd6 2 sd4.txt Pd6 5 conv.txt ReadFdmConv.py fdm.out PBS log POSCAR Pd6 2 sd5.txt Pd6 5 sd0.txt ReadFdmInp.py fdmfile.txt Pd6 3.txt Pd6_5_sd2.txt ReadFdmSd.py job_neptunium_fdmnes.sh POSCAR.fdmnes Pd6 0 conv.txt Pd6 3 conv.txt Pd6 5 sd3.txt SAE read pdb.inp Pd6 1.txt Pd6 3 sd0.txt Pd6 5 sd4.txt SAE my spacegroup.txt Pd6_1_conv.txt Pd6 3 sd2.txt Pd6 atom1 1.txt XAS.eps xsect.dat Pd6 3 sd3.txt Pd6 atom1 2.txt XAS.pdf Pd6 1 sd0.txt Pd6 1 sd2.txt Pd6_3_sd4.txt Pd6_atom1_3.txt XAS.png Pd6_1_sd3.txt Pd6_4.txt Pd6_atom1_4.txt conv.inp

> 元ファイル: Pd6_1.txt Convolutionファイル: Pd6_1_conv.txt

> > FDplot_XAS.py -c Pd6_1 -t Pd6_1

allsite 時に *.inp (fileout)にしたがってサイトごとプロット

FDplot_XAS.py -i conv_1.inp

同一サイト内の結びつけらた2つの原子 (中身は同じ結果になる)

> Pd2_atom1.txt Pd2_atom2.txt

Atom のセクションが必須となる

3.52387 3.52387 3.52387 90. 90. 90.

Atom

23 3 3 2 2. 0. 4 0 1. 1. 4 1 0.5 0.5 8 2 2 0 1. 1. 2 1 2. 2.

Crystal

	7.255	5.002 5.	548 90.0	<u>96.7</u> .	5 90.0 / a, b, c, alfa, beta, gamma
1	0.34380	0.00080	0.29910	V8	
1	0.65620	0.99920	0.70090	V6	
1	0.84380	0.99920	0.29910	V3	
1	0.15620	0.00080	0.70090	<i>V</i> 7	antiforro
-1	0.84380	0.50080	0.79910	V4	antherro
-1	0.15620	0.49920	0.20090	V5	
-1	0.34380	0.49920	0.79910	V2	
-1	0.65620	0.50080	0.20090	V1	◆

注意)デフォルトだと fix-spin

For a magnetic calculation,n, by default the spin polarization is kept fixed in amplitude. The total number of spin up and spin down electron is fixed along the self-consistenct (for an antiferro, for the total on the atoms, the number of majoritary spin and minoritary spin electron are keept fixed). To have it free (equivalent to version before 7th of June 2012), use the keyword:

SCF_mag_free

スピンの初期配置にかなり敏感

Cycle 6, Fermi Energy = -5.365 eV, Cluster Energy_KS = -61.155 eV Level val absorb = -5.955 eV

FDMNES 2015.10.15版 Linux での<u>並列化版</u>のビルド およびMUMPSライブラリでの高速化について

OpenMPI + Intel Compiler + MKL

Optimized Finite Difference Method for the Full-Potential XANES Simulations: Application to Molecular Adsorption Geometries in MOFs and Metal—Ligand Intersystem Crossing Transients

Sergey A. Guda,[†] Alexander A. Guda,^{*,‡} Mikhail A. Soldatov,[‡] Kirill A. Lomachenko,^{‡,§} Aram L. Bugaev,[‡] Carlo Lamberti,^{‡,§} Wojciech Gawelda,^{||} Christian Bressler,^{||,⊥} Grigory Smolentsev,^{‡,#} Alexander V. Soldatov,[‡] and Yves Joly^{∇,O}

DOI: 10.1021/acs.jctc.5b00327 J. Chem. Theory Comput. 2015, 11, 4512–4521

MUMPS 等の疎行列ソルバーを使ったFDMNESの 高速化について

2015.07.03以降のFDMNES には 彼らの仕事がマージされている とてつもなく高速化される ただし、ビルドがかなり煩雑になっているので注意が必要 2015.07.03以降のFDMNES には

3つの外部ライブラリが必要 + さらに BLAS/BLACS/ScaLAPACK

MUMPS Library: a parallel sparse direct solver

<u>http://mumps.enseeiht.fr/</u>ユーザー登録が必要

SCOTCH library

https://www.labri.fr/perso/pelegrin/scotch/

説明

DL

http://gforge.inria.fr/projects/scotch/

METIS library

http://glaros.dtc.umn.edu/gkhome/metis/metis/download

MUMPS 5.0.1

必要ライブラリ

OpenMPI BLAS BLACS ScaLAPAC

____makefile.inc _

make make z 4つのライブラリが作られる

lib/libdmumps.a lib/libmumps_common.a lib/libpord.a lib/libzmumps.a

FCC Cu —	
FDM R=3.0	
FDMNES 2015.01.05	34.8 sCPU
FDMNES 2015.10.06 (with MUMPS)	7.6 sCPU
FDM R=4.0	4倍~5倍 速度向上
FDMNES 2015.01.05	240.9 sCPU
FDMNES 2015.10.06 (with MUMPS)	18.8 sCPU
	13倍 速度向上
FDMNES 2015.01.05	33 h, 9 min, 56 sCPU
FDMNES 2015.10.06 (with MUMPS)	
	0 h, 10 min, 24 sCPU
	190倍 速度向上