2021A1633

負熱膨張関連物質の HAXPES による金属間電荷移動の直接観察 II Direct Observation of Inter Metallic Charge Transfer by HAPES in Negative Thermal Expansion Related Compounds II

<u>東 正樹</u>^a, 酒井 雄樹^b, 西久保 匠^a, 福田真幸^a, 木原 汐里^a <u>Masaki Azuma</u>^a, Yuki Sakai^b, Takumi Nishikubo^a, Masayuki Fukuda^a, Shiori Kihara^a

^a 東工大フロンティア材料研,^b(地独)神奈川県産業技術総合研究所 ^a MSL, Tokyo Inst. Tech.,^b KISTEC

6S²、6s⁰の電子配置に応じて電荷の自由度を持つ Bi, Pb を 3d 遷移金属と組み合わせたペロブスカイト化合物では、電荷分布が系統的に変化する。Pb, Pb を両方含む Bi_{0.5}Pb_{0.5}CoO₃の HAXPES 測定を行い、これが Bi³⁺_{0.25}Bi⁵⁺_{0.25}Pb²⁺_{0.25}Pb⁴⁺_{0.25}Co^{2.5+}O₃ という特徴的な電荷分布を持つ事を明らかにした。

キーワード: 負熱膨張材料、電荷移動、電荷分布、硬X線光電子分光

背景と研究目的:

Bi, Pb は典型元素だが、6S²、6s⁰の電子配置に応じて Bi³⁺ (Pb²⁺)、Bi⁵⁺ (Pb⁴⁺)の電荷の自由度を持 つ。6s¹(Bi⁴⁺, Pb³⁺)が存在しないことから、これらはバレンススキッパー元素と呼ばれる。我々は、 この価数変化の検出に HAXPES が非常に有用である事に着目、Bi_{1-x}Pb_xNiO₃や Bi_{1-x}Sb_xNiO₃におけ る巨大負熱膨張の起源が Bi⁵⁺と Ni²⁺の間の電荷移動である事を解明してきた[1-3]。中でも BiNi₁₋ xFe_xO₃では熱膨張係数が-198×10⁻⁶ (Cにも達する[4]。この化合物をビスフェノール型のエポキシ樹 脂に分散させることで、わずか 18%のフィラー添加で 80×10⁻⁶ (Cというエポキシの熱膨張をゼロ に抑制することができることを示した。また、PbCoO₃が Pb²⁺0.25Pb⁴⁺0.75Co²⁺0.5Co³⁺0.5O₃という特異 な電荷分布を持つ事、PbCrO₃が Pb²⁺と Pb⁴⁺の電荷グラスを持つ事も報告している[5, 6]。

電荷の自由度を持つ Bi, Pb を両方を A サイトに持つペロブスカイト酸化物 Bi_{0.5}Pb_{0.5}MO₃ (M: 3d 遷移金属) では、Bi、Pb の両方に価数変化の可能性がある。こうした興味から我々は高圧合成 実験を行った。M=Mn については、Bi³⁺_{0.5}Pb²⁺_{0.5}Mn^{3.5+}O₃ で、La_{0.5}Ca_{0.5}MnO₃ と同様、平均 3.5 価の Mn が 3+と 4+に秩序化しており、CE 型の電荷・軌道・磁気秩序を持つ事を、放射光 X線回折と中性 子回折で確認した[7]。また、BL46XU での HAXPES 測定で、M=Fe が Bi³⁺_{0.5}Pb²⁺_{0.25}Pb⁴⁺_{0.25}Fe³⁺O₃、M=Ni が Bi³⁺_{0.25}Bi⁵⁺_{0.25}Pb⁴⁺Ni²⁺O₃ と、Mn→Fe→Ni と、d 軌道が深くなることで遷移金属の価数が 3.5+→3+→2+と減少すること、また、Bi が 3+から 5+へ価数が増えるよりも早く、Pb が 2+から 4+ へと変化することを明らかにした。今回は Bi_{0.5}Pb_{0.5}CoO₃ の電荷分布を調べた。

実験:

高圧合成した Bi_{0.5}Pb_{0.5}CoO₃ 試料を用い、室温で HAXPES 測定を行った。グローブボックス中で 試料を破断後、トランスファーベッセルを用いて HAXPES チャンバーに搬送した。励起光は BL46XU からのアンジュレーター光(8 keV)を用い、ミラーによって高次光を除去するとともに 水平方向の集光を行った。

結果および考察:

Figure 1 に Bi_{0.5}Pb_{0.5}CoO₃の Bi 4f, Pb 4f HAXPES スペクトルを示す。Bi³⁺, Bi⁵⁺, Pb²⁺, Pb⁴⁺のすべて の成分が観測されていることがわかる。参照試料である BiNiO₃、PbCrO₃ との比較から、 Bi³⁺0.25Bi⁵⁺0.25Pb²⁺0.25Pb⁴⁺0.25Co^{2.5+}O₃ という特徴的な電荷分布を持つ事が明らかになった。N=Mn, Fe, Ni の結果と合わせ、Mn→Fe→Co→Ni と、d 軌道が深くなることで遷移金属の価数が 3.5+→3+→ 2.5+→2+と系統的に減少することがわかる。これに対応した Bi, Pb の価数変化は、Figure 2 に示す 通り、Bi³⁺0.5Pb²⁺0.5→Bi³⁺0.5Pb²⁺0.25Pb⁴⁺0.25→Bi³⁺0.25Bi⁵⁺0.25Pb⁴⁺0.25→Bi³⁺0.25Bi⁵⁺0.25Pb⁴⁺であること も分かった。即ち、Bi³⁺, Pb²⁺→Pb が平均価数 3 価に変化→Bi が平均価数 4 価に変化→Pb が 4 価に 変化、の順にAサイトの価数が増加していく。

Figure 1 : $Bi_{0.5}Pb_{0.5}CoO_3 O$ Bi, Pb-4f HAXPES $\vec{r} - \beta$

Figure 2: Bi_{0.5}Pb_{0.5}MO₃の(M: 3d 遷移金属)の電荷分布変化

今後の課題:

Bi_{0.5}**Pb**_{0.5}**CoO**₃ は、80K で金属絶縁体転移を示す。低温相では Co^{2.5+}→Co²⁺_{0.5}+ Co³⁺_{0.5} の電荷秩序 が起きていると考えられる。であれば Bi, Pb, Co の全てが電荷分離した Bi³⁺_{0.25} Bi⁵⁺_{0.25}Pb²⁺_{0.25}Pb⁴⁺_{0.25} Co²⁺_{0.5}+ Co³⁺_{0.5}O₃ の電荷分布が実現していると考えられるので、確認したい。

参考文献:

- [1] K. Nakano, et al., Chem. Mater., 28, 6062 (2016).
- [2] Y. Sakai, et al., Chem. Mater. 31, 4748 (2019).
- [3] T. Nishikubo, et al., Appl. Phys. Express, 11, 061102 (2018).
- [4] K. Nabetani, et al., Appl. Phys. Lett., 106, 061912 (2015).
- [5] Y. Sakai, et al., J. Am. Chem. Soc., 139, 4574 (2017).
- [6] R. Yu, et al., J. Am. Chem. Soc., 137, 12719 (2015).
- [7] S. Wakazaki, et al., Inorg. Chem., 59, 13390 (2020).