2022A1821

BL19B2

鉄系ペロブスカイト類縁酸化物正極の フッ化物イオン挿入脱離に伴う結晶構造変化の解析 Analysis for Crystal Structure in Iron-based Perovskite-related Oxide Cathode Materials with Fluoride Ion Intercalation/deintercalation

<u>山本 健太郎</u>^{a,b}, 内山 智貴^b, 渡邊 稔樹^b, 松永 利之^b, 内本 喜晴^b <u>Kentaro Yamamoto</u>^{a,b}, Tomoki Uchiyama^b, Toshiki Watanabe^b, Toshiyuki Matsunaga^b, Yoshiharu Uchimoto^b

> ^a 奈良女子大学,^b 京都大学 ^aNara Women's University, ^bKyoto University

本課題では、全固体フッ化物電池用正極 SrFeO₂の充放電時における結晶構造変化を明らかにする ために、電気化学的にフッ化物イオンを脱挿入した SrFeO₂に対しX線回折測定を行った。フッ化 物イオンの脱挿入時に SrFeO₂結晶構造は可逆的に変化することが明らかとなった。

キーワード: 全固体フッ化物電池、ペロブスカイト類縁酸化物正極、X線回折

背景と研究目的:

持続可能な社会に向けて二次電池は電気自動車用電源や自然エネルギー貯蔵電源などの大型設 備への適用が求められており、現行のリチウムイオン二次電池を超える高エネルギー密度の二次 電池の開発が望まれている。フッ化物イオンをキャリアとする全固体フッ化物イオン二次電池は 電極反応に金属/金属フッ化物の多電子反応を利用することで高いエネルギー密度が期待される。 加えて、移動キャリアであるフッ化物イオンは一価のアニオンであるため、高入出力特性も期待 される。全固体フッ化物イオン二次電池の正極材料として CuF2や BiF3 が可逆的に充放電可能で あることが報告されているが、正極のフッ化/脱フッ化反応が遅いことが実用化への課題となって いる[1,2]。CuF2やBiF3正極のフッ化/脱フッ化反応が遅いことはフッ化/脱フッ化反応時における 体積の膨張収縮が大きいためだと予測される。そこで我々の研究グループでは金属のフッ化/脱フ ッ化反応ではなく、酸フッ化物からのフッ化物イオンの挿入脱離反応に着目し、材料探索行なっ たところ、Ruddlesden-Popper 型ペロブスカイト類縁構造を有する La_{1.2}Sr_{1.8}Mn₂O₇ が高い可逆容量 を示すことを見出だしてきた[3]。このコンセプトに基づき新たな材料として、規則的にアニオン 空孔が配列した infinite layer 構造を有する SrFeO2 を正極材料として検討したところ、初回から複 数サイクルを経た後に350 mAh/gの高い可逆容量が得られることを見出した。しかし、その際の 充放電時における相転移挙動や格子定数変化などの結晶構造変化は明らかとなっていない。電気 化学的なフッ化物イオンの挿入を行うには、目的とする SrFeO₂F_x以外に固体電解質が La_{0.9}Ba_{0.1}F_{2.9} が多量(SrFeO₂F_xに対してモル比で2倍)に存在するため、キャピラリーを用いた粉末X線回折 を行うだけ量のサンプルを作製することが困難なためである。この問題を解決するため、本課題 では、多軸回折計を用いることで、電気化学測定時と同様のペレット状態のサンプルに対し、粉 末X線回折測定を行い、結晶構造変化を分析する。

実験:

SrFeO₂とLa_{0.9}Ba_{0.1}F_{2.9}とカーボンの合剤電極を作用極、電解質にLa_{0.9}Ba_{0.1}F_{2.9}、対極にPbとPbF₂とカーボンの合剤電極を用いて電気化学セルをグローブボックス中で構築した。その後、大気非 暴露環境下、140℃、5 mAg⁻¹の条件下でSrFeO₂に対して電気化学的にフッ化物イオンを挿入脱離 した。挿入脱離サイクルを複数回繰り返した後、さらに所定量の電気化学的なフッ化物イオンの 挿入脱離反応を起こした後、グローブボックス内でセルを解体し、サンプルを回収し、ラミネー トで封入した。BL19B2の多軸回折計を用いて、10 keVのエネルギーのX線をラミネート越しに サンプルに照射し、X線回折測定を行った。

結果および考察:

図1に SrFeO2の充放電曲線を示す。充電時には電圧スロープと約1.5Vにプラトーを伴いながら2.3F⁻分の容量に相当する350mAhg⁻¹の容量が得られた。その後の放電時には約0.5Vのプラトーと電圧スロープを伴いながら、充電時と同等の容量が得られた。

充放電時における SrFeO₂の結晶構造変化を調べるために、充電前(pristine)、1 個分の F 充電後(x = 1)、フル充電後(full charge)、フル放電後(full discharge)の SrFeO₂F_xの XRD を測定した(図 2)。Pristineのサンプルについて、固体電解質である La_{0.9}Ba_{0.1}F_{2.9} 由来のピークと不純物(*)以外のピークは空間群 Pm-3m で帰属された。充電に伴い、101 由来のピークがわずかに低角度側にシフトしていたことから F の挿入反応は固溶体反応で進行していると考えられる。放電後には101 由来のピークが高角度側にシフトし、充電前(pristine)と同じ位置まで戻った。このことから、SrFeO₂への電気化学的なフッ化物イオンの挿入脱離反応は可逆的に起こっていることが明らかとなった。

図2 充放電前後における SrFeO₂F_xの XRD パターン

今後の課題: 今回の測定により固体電解質 La_{0.9}Ba_{0.1}F_{2.9}を含んだ合剤電極中の SrFeO₂F_xの結晶構 造変化を捉えることができた。しかし、La_{0.9}Ba_{0.1}F_{2.9}由来の回折が強く現れており、SrFeO₂F_xのリ ートベルト解析は不可であった。今後は、固体電解質の影響をより小さくした状態での測定を行 うことで SrFeO₂F_xの構造をより厳密に決定する必要がある。

参考文献:

- [1] M. A. Reddy et al., J. Mater. Chem. 21, 17059 (2011)
- [2] D. T. Thieu, et al., Adv. Funct. Mater., 27, 1701051 (2017)
- [3] 三木、山本ら、1D20、第60回電池討論会、京都、(2019).