

SPring-8ワークショップ「触媒と放射光利用」 SPring-8触媒評価研究会(第9回) 2005年11月14日(月)13:40-14:20 丸ビルコンファレンススクエア8階Room 4

する触媒サイト構造解析の最前線

泉 康雄(東京工業大学大学院総合理工学研究科化学環境学専攻)

初期の触媒サイト構造解析(1980~) 🖙

放射光利用(高エネ研、UV-SOR、他)により一般化した X線吸収微細構造(X-ray Absorption Fine Structure) アモルファス/ハイブリッド試料 ☞ サイトをピックアップ して構造解析

確立してきた触媒サイト構造解析(1995~) 🖙 SPring-8からの高輝度放射光(~10¹³ photons sec⁻¹) 「高輝度による付加価値」が必要 (1) 高感度 (2) 選択分析 (3) 高エネルギー領域 Sample Ion Chamber 選択検出器 Aperture Slit Monochromator **Crystal Table** Detector

Heijboer et al. J. Phys. Chem. B 2004, 108, 10002 - 10011

(a)

Primary

Incident x-ray beam

高輝度

放射光

高エネルギー分解蛍光分光検出を組み合わせることで、Fe-ZSM-5中のFe^{II}/Fe^{III}、4面体/8面体サイトを 識別しながら構造分析

· 化学状態を「分光」している

講演内容(環境触媒・材料の選択分析)

(1) 選択脱硝および無水フタル酸/無水マレイン酸合成用V-TiO₂
 <u>触媒</u> ☞ V^{IV}/V^V、4面体/8面体サイトの分析(2002~2005)

(2)選択水素化/水素化分解用Pt-Sn触媒 ☞ Sn⁰/Sn¹¹/Sn¹¹ サイトの状態識別分析(2005)

(3) 環境中微量有毒金属除去 ☞ Pb^{II}およびAs^{III}/As^V サイトの 状態識別分析(2002~2005)

2001年以前の関連研究 第1回SPring-8触媒評価研究会(大阪; October 16, 2001)

高輝度放射光を用いる他のメリット

- (1) 選択脱硝および無水フタル酸/無水マレイン酸合成用V-TiO₂ 触媒 ☞ 高感度(高濃度Tiの影響を無くす)
- (3) 環境中微量有毒金属除去 ☞ 高感度(吸着剤中の高濃度Fe の影響を無くす)
- (2) 選択水素化/水素化分解用Pt-Sn触媒 ☞ 高エネルギー領域
 (すずK吸収端29 keV)

環境触媒解析の要件

複雑な環境中反応条件における、その場観測

V−TiO₂触媒

Vサイトの創り分け

Sample	V Content (wt%)	V/Ti	SA (m²g ⁻¹)	VO _x Density Molar Ratio (nm ⁻²)
V/TiO ₂	3.0	1/20	60	7.1
	1.0	1/63	60	2.4
Mesoporous V-TiO ₂	0.6	1/100	1200	0.059*1
	10.4	1/5.0	230	5.4 ^{*1}
	1.0	1/63	660	0.18
	2.0	1/31		3.9*1

^{*1} Estimated values assuming all the V species dispersed on TiO_2 surface. Judging from the synthetic routes, V may be buried inside the TiO_2 matrix for these samples.

Vサイト観測・分析の問題点

高濃度Ti中のV サイト観測には、Raman、UV-Visible、 XAFS分光に共通してS/B比の問題

Raman、UV-Visible、⁵¹V NMRでは得られない、サイトでの 結合距離や配位数を直接得ることが重要

☞ V Ka₁線選択XAFSにより、初めてV/TiO₂触媒の Vサイトその場活性構造変換を示す

Kα1線選択XAFSとは? ☞

SPring-8 15XU KEK-PF 7C にて実施

励起エネルギー 5484.1 eV

V/TiO₂ (3 wt% V)

実験データ ••• ビームライン 分解能 ---蛍光分光器分解能 ---

触媒<u>反応物&生成物</u>共存下

V K-edge EXAFS.

(A) χ functions for V/TiO₂ (1.0 wt% V) in 0.85 kPa of water at 473 K (b), NH₄VO₃ (c).

メソポーラスV-TiO₂

$R(V-O) = 1.67\text{\AA}, N = 4.1 \pm 0.6$

V K-edge EXAFS.

(C) Best-fits for filtered k^3 weighted χ -functions of mesoporous V-TiO₂ in *k*-space (1) and *R*space (2).

創り分けたVサイト構造

a V/TiO₂ 3.0 wt% Vb 1.0 wt% Vc Mesoporous V-TiO₂ 0.6 wt% V 10.4 wt% Vd V/mesoporous-TiO₂ 1.0 wt% Ve Sol-gel V-TiO₂2.0 wt% V

c メソポーラスV-TiO₂のみV^{IV}構造; a, b V/TiO₂ \approx d V/メソポーラス TiO₂ \approx e ゾルゲルTiO₂(V^V構造)。 創り分けはV含有量に依存しない

V/TiO₂、V/メソポーラスTiO₂、ゾルゲ ルTiO₂に共通する表面分散V^Vサイト 構造

<mark>メソポーラスV-TiO</mark>₂のみV^Ⅳの 置換構造 V Kα₁線選択XAFSにより明らかにした、V/TiO₂触媒のVサイト 活性構造変換の位置づけ

(a) V/SiO₂およびV/Al₂O₃の乾燥空気中脱水(723 K)前後XANES (Olthofら, 2000) ≈ 水蒸気処理(473 K)前後(this work)

- (b) 脱水後歪んだ分散4配位構造 (Eckertら, ⁵¹V NMR, 1989; Deoら, Raman, 1991; Vittadiniら, DFT, 2005) ≈ in situ水蒸気存在下 (this work) ≠ 290 Kでの水蒸気による表面重合種(Jehngら, Raman, 1996)
- (c) V/TiO₂およびV/Al₂O₃はエタノールと反応(298 K)しV-O-M結合形成、V/SiO₂では無反応 (Wentら, Raman, 1990) ≈ 2-プロパノールのV/TiO₂への解離吸着(290 K, this work)
- (d) ゾルゲルV-TiO₂が固溶(723~1173 K; Balikdjianら, XRD, 2000)
 ≠ 表面分散V^v種 (this work)→ V含有率より焼成温度が相決定

展開: メソポーラスV-TiO₂とイオン注 入V-TiO₂との類似性

☞ 可視光触媒作用の開発

興味のある学生さんは、ぜひご連絡く ださい

Fig. 1 UV-VIS spectra (diffuse reflectance) of the TiO₂ (a) and the TiO₂ implanted with Cr ions (b-d). (amounts of Cr ion implanted: (in mol/g-TiO₂) b: 2.2×10^{-7} , c: 6.6×10^{-7} , d: 1.3×10^{-6}).

Yamashita, Anpo et al. J. Synchrotron Radat. 1999, 6, 451 – 452

展開: V Kβ₅を分光したXAFSにより、アル コール脱水素過程に関わっている V^{VI}中間種を選択して情報を得る

水素化/水素化分解用金属触媒の選択性をコントロールするヘテロ原子(硫黄、セレン、すず)の作用原理

Cubo-octahedral 金 属微粒子のどの位置 でヘテロ原子は作用 するか?

(☞ さらに反応分子 と相互作用した中間 体のその場解析) 金属微粒子表面 corner, edge, planeサイトの順に Snが置換してゆくモデル

金属微粒子表面をSn(*n*-C₄H₉)_{4-n}が修飾したモデル

Fig. 5. A cubooctahedral particle gradually being covered with Sn atoms. The Sn preferentially fills the corners and edges, and eventually the denser surface planes.

Humbolt et al. J. Am. Chem. Soc. 1998, 120, 137 – 146

Sn Ka₁線選択XAFSにより、活性化Pt-Sn/SiO₂触媒中 Snサイト構造(配置)を示す

 $\begin{array}{cccc} H_2 & Sn(n-C_4H_9)_4 + H_2 & H_2 \\ Pt/SiO_2 & \rightarrow & \rightarrow & Pt-Sn/SiO_2 \\ & 673 & K & 373 & 673 & K \end{array}$

2.5 wt% PtSn/Pt = 1.0 (atomic ratio)

すずKα₁蛍光スペクトル 金属すず

SPring-8 10XU 37XU にて実施

励起光:29235.0 eV

4

ピーク半値幅12.3 eV Kα₁自然幅11.24 eV(---) 装置分解能ΔE5.0 eV(•••)

∆E < Sn K内殻空孔寿命幅*Г*_к (5.0 eV) (8.49 eV) の関係式を満たす

Sn Kα₁選択Sn K吸収端XAFS (a)

金属すず

 $\Delta E < \Gamma_{\rm K}$ を満たす:

高エネルギー端のた めブロード化して使え なかったXANES(b;通 常法)がシャープに、 Sn価数の議論可能 (挿入図:1次微分)

a': 幅*Г_Кのローレンツ* 関数でaをconvolute後 Sn Kα₁選択Sn K吸収端XAFS (a, 実験) 金属すず

活性化Pt-Sn/SiO2触媒

(B)通常法XANES(b)より
 Sn Kα₁選択XANESでは
 格段にシャープ化(a)、
 Sn^{II}支配的
 (挿入図:1次微分)

a': 幅*Г_Kのローレンツ*関数 でaをconvolute後

EXAFS $R(Sn-O) = 2.06\text{\AA}, N = 3 \sim 4$ $R(Sn-Pt) = 2.70 \text{\AA}, N = 8 \sim 10$

表面置換Sn^{II}のCO基への静 電的引力による選択水素化コ ントロール

展開:微粒子金属側(Au, Pt L₃; Ru, Rh, Pd K)の状態識 別XAFS

メソポーラス担持触媒開発中:興味のある学生さんは、ぜひご連絡ください

環境用表面材料にも適用

層 状 複 水 酸 化 物 [Mg₃Fe(OH)₈]⁺₂(CO₃²⁻)•3H₂O が微量鉛除去に有効

肩・裾野が分離した スペクトルが得られる

Pb Lα₁ (10551.5 eV)検出Pb L₃端XAFS

100ppb Pb²⁺水溶液から吸着 -OH⁺ + Pb²⁺ → -OPb²⁺ + H⁺ (表面イオン交換)

ナノ粒子およびミクロポーラスFeO_x(OH)_y ☞ 微量ヒ素(III)除去 に有効

ルが得られる

As K α_1 (10543.7 eV)検出XAFS As^{III}(OH)₃ + FeO(OH) → As^V(OH)₂O₂Fe + H₂O

研究メンバー 永森弘康・清瀧史貴・湊丈俊・Dilshad Masih(東工大)

吉武英昭Gr(横国大)·清田佳美(産創研)·宇留賀朋哉Gr(SPring-8)·Jean Pierre Candy Gr(CNRS仏)·岩澤康裕Gr(東大)·秋鹿研一 Gr(東工大)·野村昌治(KEK-PF)·福島 整Gr(物質研)·石井真史 (SPring-8)

費用援助

共同研究者

基盤B, C、特定領域(極微構造反応)、若手B、奨励A、萌芽的(以上科研費)、東レ科学技術研究助成、山田科学振興研究援助、KAST研究助成;文科省ナノテク支援