2010年3月16日 東工大 蔵前会館

SPring-8利用推進協議会 先端磁性材料研究会 第3回研究会 「パターン媒体の先端技術開発とナノ磁気イメージングからのアプローチ」

硬X線フーリエ変換ホログラフィー によるパターン媒体のイメージング

鈴木 基寛 (JASRI/SPring-8)

共同研究者

近藤裕治 (秋田県産業技術総合研究センター) 角田匡清, 磯上慎二 (東北大院工) 高橋信吾, 石尾俊二 (秋田大) 中村哲也 (JASRI/SPring-8) 淡路直樹, 野村健二 (富士通(株))

平成20年度科研費(基盤研究(C))

「放射光のコヒーレンスと偏光特性を活用した硬X線磁気ホログラフィー法の開発」 財団法人 村田学術振興財団 研究助成

「硬X線磁気ホログラフィーイメージングによるナノ磁区構造の可視化」

- 1. フーリエ変換ホログラフィー法とは
- 2. 硬X線ホログラフィー: 特色・何が難しいか
- 3. 電荷散乱ホログラフィー法の開発
- 4. 磁気ホログラフィー法 開発の現状
- 5. 今後の展開—XFELによる磁気デバイス解析に向けて

*XFEL: X線自由電子レーザー (X-ray Free Electron Laser)

背景:磁気記録媒体の高密度化

ナノ磁性 = モルフォロジーと磁性

年表は東北大 角田氏から提供

従来のX線顕微法は?

フーリエ変換ホログラフィー法

・左右円偏光による差分像 → 磁気イメージ

軟X線: S. Aoki and S. Kikuta, AIP Conference Proceedings, 147, 49 (1986). S. Eisebitt et al., Nature 432, 885 (2004).

様々な波長域でホログラフィーは可能?

	波長 (nm)	浸透深さ	可干涉距離	
可視光	~ 500	10 nm	~ mm*	
UV, EUV	~ 50	10 nm	~ mm*	
軟X線	~ 1	100 nm	~ 100 µm	
硬X線	~ 0.1	10 <i>µ</i> m	~ 10 µm	
ガンマ線 (?)	< 0.01	> 1 mm	< 1 µm (?)	

*レーザーが利用可能

- ・空間分解能:原理的には波長に比例→短波長ほど有利
- ・厚い試料の観察→短波長ほど有利
- ・空間コヒーレンス(可干渉距離)→短波長ほど短い

第3世代放射光源で~10μm @λ=0.1 nm

X線ホログラフィーの特徴

- ・高空間分解能(原理的には波長に比例)
- ・厚い試料の観察、バルク敏感性 軟X線 ... 100 nm

硬X線 10 µm

・元素選択性

共鳴吸収端の利用

・磁気イメージング

磁気円偏光二色性、共鳴吸収端の利用

硬X線ホログラフィーのメリット

・バルク敏感性

実デバイス試料の観察 表面保護層等の下に埋もれた磁性層 3次元観察 (CT)

・試料環境の自由度

超高真空環境が不要

強磁場、パルス磁場、書き込み用レーザー等の導入

•XFEL (X線自由電子レーザー) への展開 2010年度完成、2011年度から稼働予定 最初のビームラインは硬X線用

10 T 超伝導マグネット

硬X線と軟X線ホログラフィーの比較

*[Co(0.4 nm)/Pt(1.1 nm)]40 多層膜(厚さ 44 nm)に対する計算結果

元素吸収端	波長 (nm)	X線エネル ギー (eV)	δ	β	吸収率 (%)	位相シフト (°)
Co L ₃	1.59	778	2.1×10 ⁻³	1.8×10 ⁻³	63	20.9
Pt L ₃	0.107	11564	1.5×10 ⁻⁵	2.7×10 ⁻⁶	1.4	2.2

物質との相互作用:硬X線 << 軟X線

・ホログラフィー像のコントラスト低下

・十分な遮弊が得られない→参照光源?

硬X線で解決すべき点

参照光用の穴の作製

・小さい穴径→高分解能
 ・硬X線→重元素、厚さ必要
 ・細く深く掘らなければ!
 直径 10 nm × 深さ1 µm = 1:100!

細く深く掘られた井戸

透過率

Au (Z = 79)

 $T = 50\% (t = 1\mu m)@7 \text{ keV}$

 $T = 80\% (t = 1\mu m)@10 \text{ keV}$

Auなど重金属膜でも完全な遮光は難しい

参照光源物体の検討

a. 穴を参照光源とする

b. 散乱体を参照光源とする

Q1. 穴 or 遮弊体? … バビネの定理 **Q2. 半透明 (位相物体) でも機能するか?**

"凹"試料 (穴を参照光源)

'F' パターン、参照光穴3個

膜: Ta (厚さ2.75 µm) 基板: SiC メンブレン (厚さ240 nm) パターン加工: FIB (収束イオンビーム) パターン幅: 185 nm

Ta膜の透過率 Ta (Z = 73) **T = 9% (t = 2.75 μm)@5 keV** T = 34% (t = 2.75 μm)@10 keV

試料作製: NTT-ATナノファブリケーション株式会社 (フレネルゾーンプレートの実績)

"凸"試料(散乱体を参照光源)

'F' パターン、参照光物体3個

(240 nm)

膜: Ta (2.75 µm)/SiC (240 nm) パターン加工: FIBリソグラフィー パターン幅: 240 nm

試料作製: NTT-ATナノファブリケーション株式会社

この配置での理論値

1. 空間分解能

$$\Delta x \ge \frac{\lambda z}{w/2} = 46 \text{ nm}$$

2. 観察可能な視野
 $x_{\max} = \frac{\lambda z}{2p_x} = 15 \mu \text{m}$ 四方

X線CCD:

Princeton Instrumeths PI-LCX-1300

素子面積: 26.8 x 26.0 mm

1340 x 1300ピクセル

ピクセルサイズ: *px* = 20 μm

SPring-8 BL39XUビームライン

X線CCDとビームストッパ

試料まわり

フーリエ変換による再生像

試料SEM像

フーリエ変換像

- ・'F'パターンの形状を再現(幅 185 nm)
- ・多重像の記録(複数の参照光源) (回折パターンの中心部をマスクして解析)

SEMで見積もった線幅:185 nm

フリンジは *q_x* の測定範囲 < 20 (µm⁻¹) によるものか

フーリエ変換による再生像

"凸" 試料

"穴" 試料

線幅240 nm

線幅185 nm

硬X線磁気ホログラフィー用試料

近藤祐治ほか: 2008年春季 第55回応用物理学関係連合講演会

Horizontal position (μ m)

磁気ホログラフィー像

左右円偏光に対する電荷像の差分@Pt L₃吸収端

*試料は消磁状態

磁気ドット位置に、なんらかの磁気的信号

磁気ホログラフィー像

左右円偏光に対する電荷像の差分

試料の磁区変化に対応した磁気像の変化を観測

磁気コントラスト ≒ S/N比

XMCDおよび元素別磁化曲線 (Co/Pt連続膜)

反復位相回復法との組み合わせ

硬X線ホログラフィー + 反復位相回復による像再生

Lorenz-M. Stadler et al., PRL 100, 245503 (2008).

J. R. Fienup, Appl. Opt. 21, 2758 (1982).

R. P. Millane and W. J. Stroud, J. Opt. Soc. Am. A 14, 568 (1997).

XFEL (X線自由電子レーザー)

SPring-8キャンパスに建設中のXFEL施設 (2010年度完成予定)

- ・X線領域 (λ= 0.1 nm) のレーザー光源
- ・非常に高い瞬間輝度 (SPring-8の10億倍)
- ・超短パルス (~ 10 fs)
- ・コヒーレンス特性

X線の干渉性を用いたイメージングにより、ps ~ fsの物理化学現象を観察

Single-pulse magnetic scattering by EUV-FEL

ワンショットFELパルスに

よる磁気散乱パターン

Co M_{2,3} edge (hv = 59 eV, λ = 20.8 nm) パルス幅 30 fs, 2×10¹¹ photons/pulse

C. Gutt et al. Phys. Rev. B81, 100401 (2010).

まとめ

- 硬X線レンズレスホログラフィー法を開発
- 散乱体を参照光源に用いる方法が有効

Wドット:電子ビームアシスト-CVD法で形成

• 厚さ44 nm のCo/Pt磁性膜の電荷イメージング

空間分解能 40 nm

→S/N比のさらなる改善へ

• XFELへの展開

回折磁気スペックル法

ps~fs領域での磁気ダイナミクスの観察