高温酸化アルミナ皮膜の生成・相変態におよぼす種々の因子

—初期酸化皮膜から安定アルミナ皮膜への遷移—

林 重成
東京工業大学大学院理工学研究科
材料工学専攻
Protection of Heat-resistant Alloys Against High-Temperature Oxidation and Corrosion

Higher Temperature
Oxidizing, Corrosive atmospheres

1. Compact, Higher thermo-dynamical Stability
2. Good adhesion to substrate
3. Rapid formation, maintained for longer time

Cr$_2$O$_3$, Al$_2$O$_3$, and SiO$_2$

Steam turbines
Boiler tubes
Chemical plants

Gas turbines
Jet engines
Rocket engines
Growth of Metastable and α-Al_2O_3 Scale

Ni-22Al-30Pt-Hf in air at 1150°C

Number of 1h cycles

Weight change, mg/cm2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0
200
400
600
800
1000

metastable Al_2O_3

α-Al_2O_3
Typical Forms Thermally Grown Alumina

\[\gamma-\text{Al}_2\text{O}_3 \] (Cubic)

\[\theta-\text{Al}_2\text{O}_3 \] (Monoclinic)

\[\alpha-\text{Al}_2\text{O}_3 \] (Corundum)

Alloy composition
Atmosphere
Temperature
TTT Diagram of Thermally Grown Alumina

Growth rates of metastable and α-Al_2O_3 scales

$\frac{k_p}{(\text{g}^2/\text{cm}^4/\text{s})}$ vs. temperature ($^\circ\text{C}$)

- α-Al_2O_3 on NiAl
- θ-Al_2O_3 on NiAl
- θ-Al_2O_3 on FeAl
- γ-Al_2O_3 on NiAl
Effect(s) of Fe Deposit on the Phase Transformation to α-Al_2O_3

Fe deposit

Fe deposited area

900°C for 10h in air

β-NiAl substrate

α-Al_2O_3

metastable-Al_2O_3

Metal Coating Dependence on Metastable Al_2O_3 Formation

![Graph showing the mass gain (mg/cm2) over time (h) for different metal coatings at 900°C.]

- **Ni coating**
- **Fe50Al**
- **Cr coating**
- **Fe coating**

Metal Coating Dependence on Metastable Al_2O_3 Formation

Ni coating

Fe coating

Fe-50Al

Cr coating

Fe50Al

Non coating

Fe-Al

θ-Al_2O_3

α-Al_2O_3

Fe-Al

Purpose of the Study

Clarify the effect of various elements on the transformation behavior of Al_2O_3 scale during HT oxidation by in-situ HT X-ray diffraction study by means of synchrotron radiation.
Experimental Setup for In-situ Measurement

- X-ray beam
 - Energy: 12.4 keV, $\lambda=1\text{Å}$
 - Heating rate: 10-100°C/min

Diagram showing:
- Storage ring
- X-ray beam
- PILATUS 2D detector
- Sample
- Thermocouple
- Heating stage
Experimental Setup for *In-situ* Measurement
Experimental Procedures

Effect of Fe on the Transformation of Al2O3 Scale

Alloys: Fe-45~52at%Al (FeAl)

Coatings: Fe ~100nm (PVD)

Oxidation: in air, air + 7.6H₂O
in lowPₐ₀₂ = 1.8 x 10⁻¹³ atm (Ar-0.9H₂-7.6H₂O)
(FeO/Fe₃O₄, 1.2 x 10⁻¹² atm)
at 1000 ~ 1100°C

Heating and cooling rate: 50°C/min for heating
about 300°C/min for cooling

Oxidation time: 1 or 4h
Evolution of Oxide Scale during the HT Oxidation

Non-coated Fe-Al at 1000°C for 4h

θ-Al₂O₃

α-Al₂O₃

379°C

867°C

948°C

997°C

999°C

999°C

999°C

999°C

999°C

589°C

32°C
Change in Intensities of Different Al$_2$O$_3$ Phases

![Graph showing the change in intensities of different Al$_2$O$_3$ phases with oxidation time and temperature.](image)

- Temperature, °C
- Oxidation time, min
- Intensity, a.u.

<table>
<thead>
<tr>
<th>Phase</th>
<th>(002)</th>
<th>(113)</th>
<th>(104)</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ-Al$_2$O$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Al$_2$O$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heating:

- θ-Al$_2$O$_3$ (002)
- α-Al$_2$O$_3$ (104)
Change in Lattice Spacing of α-Al_2O_3

Lattice spacing, Å

Temperature, °C

Oxidation time, min

$d=2.5724$: Pure-Al_2O_3 at 1000°C
Evolution of Oxide Scale During the HT Oxidation

Fe-coated Fe-Al at 1000°C for 1h

Heating

Isothermal oxidation for 1h

Cooling

101°C
462°C
998°C
998°C
999°C
999°C
998°C
947°C
866°C
703°C
541°C
378°C
297°C

High-angle

Intensity, a.u.

α-Al₂O₃

Fe₂O₃

Fe₂O₃

Al₂O₃

R.T.

1000°C

500°C
Change in Lattice Spacing of Oxide Scale

Temperature, °C

Lattice spacing, Å

Change in Lattice Spacing of Oxide Scale

2.7214: Pure-Fe\(_2\)O\(_3\) at 800°C

2.7032: Al\(_2\)O\(_3\)-saturated Fe\(_2\)O\(_3\) at 1000°C

2.5795: Fe\(_2\)O\(_3\)-saturated Al\(_2\)O\(_3\) at 1000°C

2.5719: Pure-Al\(_2\)O\(_3\) at 1000°C

Oxidation time, min

Temperature, °C

Lattice spacing, Å

Oxidation time, min

Oxidation time, min
TEM Cross-section and EDS Analysis of α-Al₂O₃

Fe-coated Fe-Al at 1000°C for 1h

<table>
<thead>
<tr>
<th></th>
<th>Fe</th>
<th>Al</th>
<th>O</th>
<th>Solid Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42.0</td>
<td>7.1</td>
<td>50.9</td>
<td>14.5 mol%Al₂O₃</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>29.1</td>
<td>68.3</td>
<td>7.9 mol%Fe₂O₃</td>
</tr>
<tr>
<td>3</td>
<td>1.4</td>
<td>31.3</td>
<td>67.3</td>
<td>4.3 mol%Fe₂O₃</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>30.6</td>
<td>69.3</td>
<td>0.3 mol%Fe₂O₃</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
<td>31.3</td>
<td>68.5</td>
<td>0.6 mol%Fe₂O₃</td>
</tr>
</tbody>
</table>

6	2.5	30.7	66.8	7.5 mol%Fe₂O₃
7	1.9	28.1	70.1	6.3 mol%Fe₂O₃
8	0.3	32.6	67.1	0.9 mol%Fe₂O₃
9	0.0	31.5	58.5	0 mol%Fe₂O₃
10	0.2	32.9	67.0	0.6 mol%Fe₂O₃

| 11| 35.1 | 6.5 | 58.4| 15.6 mol%Al₂O₃|
| 12| 1.2 | 33.9| 64.9| 3.4 mol%Fe₂O₃ |
Effect of P_{O_2} on the Transformation of Al_2O_3

Bulk Fe-52Al oxidized in air, air+H_2O or $\text{H}_2/\text{H}_2\text{O}$ at 1100°C

![Graph showing the transformation of Al_2O_3 under different conditions.](Image)
Effect of H$_2$O and/or P$_{O2}$ on the Transformation to α-Al$_2$O$_3$

Fe-50at%Al合金
1100°C

Oxidation time, min

Intensity, a.u.

θ-Al$_2$O$_3$ → α-Al$_2$O$_3$

Air+H$_2$O

θ-Al$_2$O$_3$ → α-Al$_2$O$_3$

H$_2$/H$_2$O

θ-Al$_2$O$_3$ → α-Al$_2$O$_3$

Air+H$_2$O
TEM Cross-sections of α-Al_2O_3

Bulk Fe-52Al at 1100°C for 1h (40min)

- in air for 1h
- in air+H_2O for 40min
- in H_2/H$_2\text{O}$ for 1h
Effect of P_{O_2} on the Transformation of Al_2O_3

Fe-coated Fe-52Al oxidized in air or $\text{H}_2/\text{H}_2\text{O}$ at 1100°C

Intensity, a.u.

2θ, degree
TEM Cross-sections of α-Al_2O_3

Fe-coated Fe-52Al at 1100°C for 1h (40min)

Fe_2O_3 is necessary to form α-Al_2O_3 without metastable Al_2O_3 formation

in air for 1h

in H_2-H_2O for 1h

400nm

α-Al_2O_3
Modified Ternary Fe-Al-O System

Summary

Formation of α-A_2O_3 from Fe_2O_3 was confirmed by in-situ measurement via synchrotron radiation.

Precipitation of α-Al_2O_3 (sympathetic nucleation) occurred when Fe-coated alloy was oxidized in air.

In low P_{O_2}, Metastable Al_2O_3 formed and it’s transformation to α-Al_2O_3 delayed.

Transformation to α-A_2O_3 was delayed and/or metastable θ-Al_2O_3 was stabilized:

- On the alloys with lower Fe content.
- In the atmosphere with lower partial pressure of oxygen.

Lower Fe content in the metastable Al_2O_3 delayed the transformation.