硬X線光電子分光法による 最先端LSIおよび太陽電池の材料評価

小椋 厚志

SPring-8 次世代先端デバイス研究会(第2回) - 硬X線光電子分光(HAXPES)によるデバイス評価 - 2015.3.17

ポストスケーリング時代のLSI

Transistor Performance Trend 1.5 32nm 1.0 V, 100 nA I_{OFF} Strain 45nm Hi-k-MG 1.0 Other Drive 65nm "Classic" scaling Current 90nm (mA/um) 0.5 130nm PMOS 0.0 1000 100 Gate Pitch (nm)

Strain is a critical ingredient in modern transistor scaling Strain was first introduced at 90nm, and its contribution has increased in each subsequent generation

(intel) E MAICY CERTICE STORE STORE

ポストスケーリング技術

微細化 十 新材料

先端LSIの現状 -32nmノード

先端LSIの現状 -22nmノード

結晶シリコン太陽電池の低コスト・高効率化

電子デバイスの特徴

Hard X-ray photoelectron spectroscopy (HAXPES or HXPS)

軟X線に比べ、光電子の検出深さが深い

<u>表面の影響を無視+非破壊+バルク敏感+埋もれた界面評価</u> 角度分解を併用することによりバルク、界面の情報を分離可能 HAXPES:特徵

20 10 **Binding energy [eV]** 0

とある論文の査読者とのやり取り

<u>XPS</u>

Q. 窒素リッチ層がXPS測定時の Ar⁺エッチングで形成される可能 性はないのでしょうか?

Binding Energy [eV]

異なるプラズマ酸化条件で作製されたSiO2膜の物理的および化学的特性評価

プラズマ酸化条件の最適化

Ox. Process	Gas	Press.	Temp.	time
		Pa	degC.	sec.
Thermal Dry	Dry		1050	
SPA plasma oxidation	Ar/O ₂	667	500	1450
	Ar/O ₂	400	500	1000
	Ar/O ₂	133	500	525
	Ar/O ₂ /H ₂	667	500	600
	Ar/O ₂ /H ₂	400	500	750
	Ar/O ₂ /H ₂	133	500	575

・ガス中に水素を導入する効果

・圧力による効果

プラズマ酸化膜の構造 -密度/界面平坦度

圧力の効果

サブオキサイドとケミカルシフト

Intensity

2.7

2.6

2.5

2.4

2.3

2.2

2.1

Density [g/cm³]

K. Kawase, et.al., Jpn. J. Appl. Phys. 48 101401 (2009)

<u>異なるプラズマ酸化条件</u>で作製されたSiO₂膜の物理的および化学的特性評価 特に、水素添加及び圧力の効果について検討した。

 XRRの測定結果より、

 <u>熱酸化よりプラズマ酸化の方が平坦性が高く、高密度である</u>

XPSの測定結果より、

<u>熱酸化に比べ、プラズマ酸化の方がSiの電子がOに移動</u>

ケミカルシフトと密度に相互関係

プラズマ酸化の最適条件は <u>低圧力かつ水素</u>を導入することにより、

・酸化レートの向上

・界面ラフネスの低減

·高密度化

立体トランジスタのゲート絶縁膜

CVD膜のプラズマ改質

O1s光電子スペクトル 1.2 Normalized Intensity [A.U] → Th-Ox. hv= 7397 eV 1.0 O1s HT SiO₂ 🕂 w/ Plasma 0.8 treatment 📥 w/o Plasma 0.6 treatment 0.4 0.2 538 536 534 532 Binding Energy [eV] 1.2 Normalized Intensity [A.U] → Th-Ox. hv= 7397 eV 1.0 O1s LT SiO₂ ---- w/ Plasma 0.8 treatment -A- w/o Plasma 0.6 treatment 0.4 0.2 538 536 534 532 Binding Energy [eV]

化学結合状態

次世代ゲートスタック

Binding energy (eV)

本研究の目的 GCIBプロセスによるAl₂O₃ブロッキング層の改質および 電気特性向上要因の評価

書き込み/消去特性

フラットバンド電圧特性の書き込み・消去サイクル依存

w/o GCIB process

w/ GCIB process

GCIBプロセスによる膜密度の変化

w/o GCIB process

w/ GCIB process

XRRプロファイル

GCIBプロセス前後で長周期性の振幅が観測された

 \implies

GCIB処理層を反映 → 超低エネルギー照射効果

GCIB プロセスの効果

▶表面近傍の数nmのみ改質(表面近傍で顕著)▶深さ方向に連続的な密度低下

バンドギャップの改変効果

Ref.) S. Miyazaki, J. Vac. Sci. Technol. B 19 2212 (2001).

バンド構造の変調

Band diagram for erase operation

Fowler-Nordheim Tunneling

$$J = A \cdot F^2 \cdot \exp(\frac{-4\sqrt{2mq\phi_B^3}}{3\hbar F})$$

▶絶縁層膜厚に依らない

▶電界強度Fと強い相関

Ref.) H. T. Lue, S. C. Lai, T. H. Hsu, P. Y. Du, S. Y. Wang, K. Y. Hsieh, R. Liu, IEEE T-DMR, 10, 222

MANOS改質 ーまとめ

X線反射率測定による膜密度の評価およびX線光電子分光法によるバンド ギャップの評価により、GCIBプロセスによる電気特性向上要因を検討した

GCIBプロセスの導入により

消去時のフラットバンドボルテージシフトが大きく増加

メモリウィンドウが約40%の向上

GCIB プロセスによる改質効果 >表面近傍の数nmのみ改質(表面近傍で顕著)
>深さ方向にほぼ線形な密度低下

GCIB プロセスによるバンド変調効果 ➢ Triangular potential barrierにおける電界効果の緩和
》消去プログラム時のFNトンネル電流の抑制

各種評価により、GCIBプロセスによる改質効果を検討し、電気特性の向上 要因がAl₂O₃ブロッキング層のバンドギャップ変調である事を明らかにした

ALD-AIOxによるパッシベーション

目的

固定電荷密度量変化におけるSi表面バンド構造に着目した例は未だない

固定電荷量に依存したSi表面のバンド構造評価

AlOx/c-Si界面のバンド構造決定

(Valence band offset : VBO)

Valence band spectra of bulk p-Si and AlOx/c-Si

- 膜厚変化に伴いVBスペクトル形状が変化
 ✓ 電荷量の違いによる状態密度の変化
 VBOの決定
 ✓ E_{VBO 30 nm} = 1.8 eV
 - $\checkmark \quad \mathsf{E}_{\mathsf{VBO 10 nm}} = 1.4 \; \mathsf{eV}$

S. Miyazaki, J. Vac. Sci. Technol. B, Vol. 19, (2001)
 H. Y. Yu et al., Appl. Phys. Lett., Vol. 81, (2002)

O 1s energy loss spectra of AlOx/c-Si

■ Al 2p コアスペクトルから界面近傍でピークシフトを確認

- 角度分解HAXPESよりAl 2pのピーク位置は深さ方向依存を示す
 - ✓ 表面側は界面よりフェルミ側に曲げられている
 - ✓ 曲りの程度は膜厚依存

光電子分光法を用いて<u>符号が異なる固定電荷</u>を有する AIOx膜のバンド構造を評価

■パッシベーション特性は固定電荷に対し有意差を示した

■VBO、バンドギャップは膜厚依存を示した

■AIOx膜のポテンシャル傾斜を確認

<u>パッシベーション特性とSiバンドベンディングとの関係を明らかにした</u>

SiNパッシベーション

SiN/Si界面における電子化学状態に注目した物理特性は未だ十分に 明らかにされていない!

熱処理による変化 -18 nm

SiNパッシベーション ーまとめ

SiN/Si界面における物理特性をX線プローブを用いて評価した

◆ 界面における酸素混入と窒素rich層により、SiN膜が多層構造であることを 確認した

窒素richの厚さが減少するほど、lifetimeが増加する

・ 膜厚18 nmと30 nmにおいて、SiN膜3層と酸化膜1層の4層構造であることを 確認した

SiN層 (bottom)は窒素rich層に対応している

XRRによりSiN膜中の密度分布を確認した

窒素rich層と酸化膜中の密度傾斜は、SiN/Si界面の高濃度な窒素により生じている

界面における窒素濃度が小さい程、lifetimeが増加する

<u>界面に存在する窒素はlifetimeに影響を与える</u>

パッシベーション膜の物理特性評価にはX線プローブ評価が有効

バイアス印加HAXPES

試料概要図

新規開発ホルダー

界面準位、空乏層形成などを反映

デバイス動作状態の評価を期待

2015A1706 2014B1613 2014B1615 2014B1938 2014B1892 2014A1533 2013A1833 2012B1730 2012B1900 2012A1597 2012A1771 2011A1726 2010B1843

2010A1845 2009B1862 2009A1927 2008B1917 2008B2073 2008A1781 2007B1823 2007A1216 2007A1913 2007A0101 2006A1044 2006A0250