

中温作動固体酸化物形燃料電池材料の 放射光を用いた解析

関西電力株式会社 出口 博史

平成20年10月28日 SPring-8触媒評価研究会(第15回)(於:大阪府立大学)

1

KANSAL 固体酸化物形燃料電池 Solid Oxide Fuel Cell (SOFC)²

1000°C付近でSOFCを作動させるには課題が多い

電極/電解質界面の反応性, 電極の焼結, 材料のコスト, 熱応力....

→ SOFCの低温作動化(600~800°C) 従来とは異なる材料を使用する。 セリア、ランタンガレート、ナノ粒子(Ru等)添加...

測定例1

ドーパント種がイオン導電率に与えるメカニズムの解明(1)

~XAFSによる希土類元素添加セリアの カチオンー酸素パス測定結果~

イオン導電性の発現

価数の異なる陽イオンをドープすると酸素空孔が導入され、O²⁻はそ れを伝って移動

Gd₂O₃1ヶあたり1ヶの酸素空孔が生成

	CeO ₂	Gadolinia Doped Ceria		
	around Ce	around Ce	around Gd	
nearest neighbor	Ce-O	Ce-O	Gd-O	
	(number of path : 8)	(number of path : < 8)	(number of path : < 8)	
second nearest neighbor	Ce-Ce	Ce-Ce, Ce-Gd	Gd-Gd, Gd-Ce	
	(number of path : 12)	(number of path : 12)	(number of path : 12)	

1:(CeO₂)_{0.8}(LnO_{1.5})_{0.2}のイオン導電率(800°C)

7

K. Eguchi et al. Solid State Ionics 52 (1992) 165.

1: Ce-K端(40.44 keV)付近の吸収スペクトル

Absorption Spectra near the Ce K-edge (40.44 keV) of Doped Ceria Compounds

Magnitude of Fourier Transform of EXAFS Spectra near the Ce K-edge of Doped Ceria Compounds

Coordination Numbers of Oxide Ions at the First Nearest Neighbor around Ce (N_{Ce})

Coordination Numbers of Oxide Ions at the First Nearest Neighbor of Dopant (N_{Dopant})

Smをドープしたときに最も酸化物イオン導電率が高かったのは、酸素がより均一に分 布しているため、酸素の伝導パスが最も多いからである。

→ XAFSにより局所的な歪みの観点から導電率のドーパント依存性を明らかにした。

測定例2

ドーパント種がイオン導電率に与えるメカニズムの解明(2)

~XAFSによる希土類元素添加セリアの カチオンーカチオンパス測定結果~

	CeO ₂	Gadolinia Doped Ceria		
	around Ce	around Ce	around Gd	
nearest neighbor	Ce-O	Ce-O	Gd-O	
	(number of path : 8)	(number of path : < 8)	(number of path : < 8)	
second nearest neighbor	Ce-Ce	Ce-Ce, Ce-Gd	Gd-Gd, Gd-Ce	
	(number of path : 12)	(number of path : 12)	(number of path : 12)	

2:各試料のフーリエ変換スペクトル

Calculated using feff7 based on cubic fluorite structure by editing of feff.inp for paths including dopant cation. Fitting software: feffit

Samples			
(GdO _{1.5}) _x (CeO ₂) _{1-x}	x=0.05, 0.10, 0.20, 0.30	\rightarrow	xGDC
(YO _{1.5}) _x (CeO ₂) _{1-x}	x=0.05, 0.10, 0.15, 0.20, 0.30	\rightarrow	xYDC
(LaO _{1.5}) _x (CeO ₂) _{1-x}	x= 0.02, 0.05, 0.10, 0.15, 0.20, 0.30) →	xLDC
references	CeO ₂ , Gd ₂ O ₃ , Y ₂ O ₃ , La ₂ O ₃		
Ionic conductivity	GDC > YDC > LDC		

Experiments

Edges : Ce-K(40.4 keV), Gd-K(50.2 keV), Y-K(17.1 keV), La-K(38.9 keV)

Beamline : SPring-8 BL16B2

Measurements: transmission mode in air at room temperature.

H. Deguchi et al., Solid State Ionics, 176, 1817 (2005).

2:結果および考察

YDC、LDCでは、それぞれY³⁺-Y³⁺パス、La³⁺-La³⁺パスの割合がドーパント濃度に比べて 非常に高い

GDCにおけるGd³⁺-Gd³⁺パスの割合は低く、Gd濃度が高くなるにつれて徐々に増加

→Y³⁺、La³⁺はGd³⁺と比べて、互いに集まる傾向が強い

Ce⁴⁺-O²⁻およびLn³⁺ -O²⁻の解析から、YDC、LDCにおける酸素空孔はそれぞれY³⁺、La³⁺ に隣接する傾向が強いが、GDCでは比較的均一に存在

イオン導電率の低いドーパント種では、酸素空孔はドーパントカチオンに囲まれるように存 在することが明らかとなった。このような状態で存在する酸素空孔はO²⁻の移動に寄与しに くくなるため、イオン導電率が低いと考えられる。