X線応力測定法による横縞形SOFC 電解質応力のin-situ測定

1. SOFCの原理と開発の紹介 2. 研究の背景 SOFCの応力と応力評価 3. 応力測定 4. 測定結果

グリーンエネルギー研究会

各種分散型電源の発電効率

SOFCの発電原理

ンエネルギー研究会

SOFCの構成材料に求められる要件

楼武武公	1冊 ※自行ナッナナキシー	要求特性			
们再及司印红	惊华的/6州科	各材料に固有の項目	全材料に共通の項目		
電解質	ZrO ₂ -Y ₂ O ₃ (YSZ)	 ・高いイオン導電率 ・電子導電率が低い (イオン輸率が高い) ・ガスを透過しない緻密性 ・十分な強度 			
空気極 (カソード)	LaMnO ₃ 系 固溶体	 ・高い電子導電率 ・酸素還元のための触媒活性 ・適度な多孔性 ・微構造の長期安定性 	 ・製造時・運転時におけ る化学的安定性 ・接触する材料相互の 化学的両立性 ・熱膨張の整合 ・適度なコスト 		
燃料極 (アノード)	Ni-YSZ サーメット	 ・高い電子導伝性 ・燃料酸化のための触媒活性 ・炭化水素改質のための触媒活性 ・適度な多孔性 ・微構造の長期安定性 			
インタコネクタ (セパレータ)	LaCrO ₃ 系固溶体 または 耐熱合金	 ・高い電子導伝性 ・イオン導電率が低い (電子輸率が高い) ・ガスを透過しない緻密性 ・十分な強度 ・寸法安定性 			
リーンエネルギ	一研究会		Tokyo Gas		

ク

本研究の目的

◆応力の起源の把握 ◆応力の実測と数値解析による応力分布推測

グリーンエネルギー研究会

・膨張挙動のミスマッチによる残留応力

・温度分布に起因する熱応力

・化学変化により誘起される応力

ψの変化に伴うピーク位置のシフト

グリーンエネルギー研究会

SPring8における応力測定実験

年次	測定内容	使用ビームライン
2000	単セルの残留応力	BL09XU
2002	セルスタックの残留応力	BL19B2
2002	単セルの深さ方向応力分布	BL19B2
2003	横縞形セルの残留応力測定	BL09XU
~		
2005	発電時(平板型)の残留応力	BL09XU
~	のin-situ測定	
2008	発電時(横縞型)の残留応力	BL09XU
~	のin-situ測定	

グリーンエネルギー研究会

単セルの応力測定

グリーンエネルギー研究会

セル電解質のXRDパターン

グリ-

放射光ライン	BL09XU
光源	真空封止アンジュレータ
X線エネルギー	8.05 keV
モノクロ結晶	Si 311
測定法	並傾法
スリット幅	1~5 mm ×0.5 mm
ソーラースリット	無し
アナライザー	無し

ψの増加に伴う(531)面反射ピークのシフト

d -sin² y diagram

反り取り処理の影響

応力評価に使用した機械的物性値

	E	υ	(1+ υ)/E [10 ⁻⁴ /GPa]
Electrolyte	219 ^{a)}	0.28 ^{a)}	171

a) K. Tanaka, Y. Doi, Y. Akiniwa, H. Sumi, Y. Mizutani, and K. Ukai, J. Soc. Mat. Sci. 54, 1080(2005).

残留応力の評価結果

ID	Material	Manufacturing	Post	Reduced	Position	Calculated
		Process	treatment	or not		Stress [MPa]
1	YSZ	screen-print	as-sintered		center	823
2	YSZ	screen-print	as-sintered		corner	715
3	YSZ	screen-print	flattened		center	673
4	YSZ	screen-print	flattened		corner	720
5	YSZ	screen-print	flattened	reduced	center	700
6	YSZ	screen-print	flattened	reduced	corner	721
7	YSZ	dip-coat	flattened		corner	719

電池発電時の応力のin-situ測定 (REDOXに対する変化)

SOFCの実用運転上の留意点

・非常停止時の対応は?
・局所リークによる対劣化性能?
・局所燃料枯れによる対劣化性能?

酸化危険温度以上で、還 元性ガスを供給し、酸化を 防止する必要がある

対REDOX耐性を有するアノード ^{オルギー研究会}

グリ

アノード劣化のメカニズム

Ni

<u>グリーンエネルギー研究会</u>

NiO

Niの酸化還元によるアノードの不可逆的な塑性変化

REDOXによるアノードの膨張挙動

グレ

応力変化のin-situ測定

電解質部分(YSZ)の2θパターン

放射光ライン	BL09XU
光源	真空封止アンジュレータ
X線エネルギー	8.05 keV
モノクロ結晶	Si 311
測定法	並傾法
スリット幅	1~5 mm ×0.5 mm
ソーラースリット	無し
アナライザー	無し
試料(アノード支持)	15 mm ×15 mm ×2mm

グ

シエネルギー研究会

1.残留応力の温度依存 2. as-grown試料の還元挙動 3. 空気による酸化挙動 4.750℃発電時の挙動 OCV→0.8 V→0.1 V→-0.1 V

応力測定結果

ピーク位置の時間変化(還元挙動)

ピーク位置の時間変化($H_2/N_2 \rightarrow Air$)

再酸化試料のd-sin²ψダイアグラム

ピーク位置の時間変化(0.1V→ -0.1V)

平板形SOFCの再酸化挙動 2-1. 横縞形SOFCの還元実施時の挙動 -基板+燃料極+電解質 2-2. 横縞形SOFCのRedox実施時の挙動 -基板+電解質 -基板+電解質

2.1.横縞形SOFCの還元時の挙動

2.1.横縞形SOFCの還元時の挙動

グリーンエネルギー研究会

2.2.横縞形SOFCのRedox時の挙動

基板+電解質

<u>グリーンエネ</u>ルギー

-研究会

2.2. 横縞形SOFCのRedox時の挙動

グリーンエネルギー研究会

2.2. 横縞形SOFCのRedox時の挙動

<u>グリーンエネルギー研究会</u>

まとめ

・放射光を利用して、SOFCセルの残留応力測定を行った。測 定結果は数値解析結果と照合し、数値解析の妥当性を検証し た。

・発電環境下における平板型セルの残留応力のin-situ測定を 実施した燃料極の再酸化は引っ張り応力を誘起し、セル破壊を 引き起こすことが明らかとなった。

・横縞形SOFC基板では、基板-電解質の組合せおよび基板-燃料極-電解質の組合せにおいて、Redox時に電解質の残留応力変化は確認されなかった。

グリーンエネルギー研究会

本研究はSPring8の放射光を利用して実施したものであり、ご協力いただきました依田博士、佐藤博士、廣沢博士に深く感謝いたします。

