光ファイバ材料のXAFS法による構造解析

ガラス・セラミックス研究会 2010/8/27

住友電気工業(株) 解析技術研究センター 飯原順次

光信号増幅: 電気信号への変換が不要 ⇒ 高速伝送が可能

➤ EDFA スペクトルへの要求

• 広帯域化

高AI濃度化が現在の方向性

増幅スペクトルの形状変化

← Erの局所構造変化に起因

〈研究事例〉

 $0.5Er_2O_3-(75-x)SiO_2-xAl_2O_2-25Na_2O_{(x=0 \sim 30)}$

S.Tanabe, et al., JNCS 196, 101, (1996)

1Er₂O₃-59SiO₂-20Al₂O₃ -20Na₂O

P.M. Peters, et al., JNCS 239, 162, (1998)

0.5Er₂O₃-76SiO₂-4.5Al₂O₃-19Ti₂O₃

F. d'Acapito, et al., JNCS 293, 118, (2001)

2Er₂O₃-58SiO₂-10Al₂O₃-30Li₂O₃

T.Murata, et al., STAM 1, 139, (2000)

添加元素に依存して局所構造変化

バルクガラスでの評価

実ファイバでの評価事例はない

放射光分析

- · XAFS & X線散乱
- ·動径分布関数 (RDF)

MDシミュレーション

- ・構造モデル
- ·RDF計算, etc

AI共添加

構造変化

- ·何が変化?(What)
- ·何故A/で?(Why)

試料番号	コア組成		
	Er/wt.ppm	AI/wt.%	Ge/wt.%
Α	840	0	3.9
В	1357	1.4	3.4
C	1022	3.7	3.8
D	958	6.5	4.1

標準試料; Er-metal, Er₂O₃

低濃度 ファイバ換算 < 10 wt. ppm

何らかの高感度化対策が不可欠

ファイバではなくプリフォーム(コア材のみ) での解析では不可なのか?

ファイバとフリフォームで明らかにErの状態が異なる

ファイバでの評価が必須

Al=0 wt.%試料の動径構造関数プリフォームとファイバの比較

1. 試料濃縮

2. 高感度検出器の利用

○XAFS測定条件

入射X線検出器: 17 cm イオンチャンバー、N₂フロー

透過X線検出器: 31 cm イオンチャンバー、N2フロー

蛍光X線検出器:7素子SDD検出器

素子面積; 5 mm²×7

試料一検出器距離; < 10 mm

蛍光法測定時のレイアウト

Er-0結合距離: 試料Aが他のEDFより短距離

✓ AI無添加、AI添加でEr-O距離が変化 ✓ Er-O距離のAI濃度依存性は認められない

・Al濃度増に対応して、Er-0配位数が増大 → EDFAスペクトルが広帯域、平坦化

T.Haruna et al, Optics Express, 14(23), 11036(2006).

Er-0結合距離 Al無添加ではAl添加に比べて短距離

Er-0配位数 Al濃度高くなると配位数増大

2-body Potentials

(*) confirmed the stability when applied to crystalline structures. (ex. Al₂SiO₅, etc)

Structure Model

- •~3000 atoms in Cell
- 20000 steps @4000 K (10⁻¹⁵ sec/step)
- Calculation RDFs and Coordination

(stable configuration)

Analysis Technology Research Center

Ingenious Dynamics

シミュレーションを活用して、アルミニウムと 同等以上の効果を持つ元素を探索

ガラスを試作し広帯域化の効果確認

Er-0の配位数もAI添加同様に 変化していることを確認 (XAFS解析)

XAFSおよびX線散乱法を用いてEDFの構造解析を行った。

- ・AI添加濃度が高くなると、Er-O配位数が大きくなる
- ・AI添加により、Er-O結合距離が長くなる

MDシミュレーションを用いた考察

·Er-0の結合距離、配位数変化は第2近接原子のAIの効果

シミュレーションにより、新規添加元素を予測 試作、分析により効果を確認

