

光ファイバ材料のXAFS法による構造解析

ガラス・セラミックス研究会 2010/8/27

住友電気工業(株) 解析技術研究センター 飯原順次

情報通信:銅/電気からガラス/光へ・・・

光増幅器とEr添加ファイバ(EDF)

Analysis Technology Research Center

増幅スペクトルの添加元素依存性

4

バルクガラスでの評価

実ファイバでの評価事例はない

目的と手法: EDF構造解析⇒機構解明

試料番号 -	コア組成		
	Er/wt.ppm	Al/wt.%	Ge/wt.%
Α	840	0	3.9
В	1357	1.4	3.4
С	1022	3.7	3.8
D	958	6.5	4.1
標準試料; Er-metal, Er ₂ O ₃			
低濃度 ファイバ換算 < 10 wt. ppm			

何らかの高感度化対策が不可欠

ファイバとフリフォームの違い

ファイバではなくプリフォーム(コア材のみ) での解析では不可なのか?

ファイバとフリフォームで明らか にErの状態が異なる

ファイバでの評価が必須

プリフォームとファイバの比較

高感度化の方策

1. 試料濃縮

2. 高感度検出器の利用

XAFS測定方法

〇XAFS測定条件 入射X線検出器: 17 cm イオンチャンバー、N₂フロー 透過X線検出器: 31 cm イオンチャンバー、N₂フロー 蛍光X線検出器: 7素子SDD検出器

素子面積; 5 mm²×7 試料一検出器距離; < 10 mm

蛍光法測定時のレイアウト

Analysis Technology Research Center

結果:XAFSで得られた動径構造関数

Er-0結合距離: 試料Aが他のEDFより短距離

Analysis Technology Research Center

結果:Er-0 配位数の変化

14

Er-0結合距離 AI無添加ではAI添加に比べて短距離

Er-0配位数 Al濃度高くなると配位数増大

X線散乱で得られる動径分布関数

Analysis Technology Research Center

MDシミュレーション

φ <u>2-body Potentials</u>

(*) confirmed the stability when applied to crystalline structures. (ex. Al₂SiO₅, etc)

Structure Model

~3000 atoms in Cell
20000 steps @4000 K (10⁻¹⁵ sec/step)

Calculation RDFs <u>and Coordination</u>

(stable configuration)

X線散乱による構造解析

Analysis Technology Research Center

MDシミュレーション結果: Er-0配位数

Analysis Technology Research Center

MDシミュレーションによるErまわりの構造解析

Analysis Technology Research Center

XAFSおよびX線散乱法を用いてEDFの構造解析を行った。

・Al添加濃度が高くなると、Er-0配位数が大きくなる ・Al添加により、Er-0結合距離が長くなる

MDシミュレーションを用いた考察 ・Er-0の結合距離、配位数変化は第2近接原子のAIの効果

シミュレーションにより、新規添加元素を予測 試作、分析により効果を確認

