

- SPring-8の紹介
- SPring-8における産業利用の状況 ➡ 産業利用事例集
- SPring-8放射光を用いたガラス・セラミックスの研究方法
 - > XAFS分光法 ➡> 第1回研究会
 - ▶ 高エネルギーX線を利用したXRD法 📥 第2回研究会予定
 - > シミュレーション技術を用いた構造モデルの最適化
- SPring-8を使うための利用制度

SPring-8利用推進協議会 研究開発委員会 SPring-8ガラス・セラミックス研究会(第1回)—ガラス・セラミックス材料の機能 発現を分析・解析するためのXAFS分光法の利用 平成22年8月27日(金)

放射光を利用するための研究手法

SPring-8 ビームラインマップ

2010.5.17 現在

共用及び専用BL利用数の推移

供用開始から約11年間(1997B~2009B)

〇実施課題数 共用:12,752件、 専用: 3,592件 <u>合計 16,344件</u> 〇利用者数 共用:81,521人、 専用:28,702人 <u>合計 110,223人</u>

1年あたり(2009A、B)

2010年3月までに延べ11万人の研究者が利用!

〇実施課題数 共用: 1, 391件、 専用: 513件 <u>合計 1, 904件</u> 〇利用者数 共用: 9, 033人、 専用: 3, 905人 <u>合計 12, 938人</u>

利用者数の推移

共用BLにおける所属機関別利用研究課題数 SPring も

※所属機関分類

●大学等教育機関:国公立大学、私立大学、高等専門学校等
 ●国公立研究機関等:独立行政法人、大学等共同研究機関、公益法人、特殊法人等
 ●産業界:民間企業(海外企業の日本法人を含む)
 ●海外:海外の全ての機関・法人等

産業界における利用企業及び利用分野

SPring-8

- SPring-8の紹介
- SPring-8における産業利用の状況 ⇒ 産業利用事例集

● SPring-8放射光を用いたガラス・セラミックスの研究方法

- ➤ XAFS分光法 ➡> 第1回研究会
- ▶ 高エネルギーX線を利用したXRD法 ➡ 第2回研究会予定
- > シミュレーション技術を用いた構造モデルの最適化

● SPring-8を使うための利用制度

SPring-8利用推進協議会 研究開発委員会 SPring-8ガラス・セラミックス研究会(第1回)—ガラス・セラミックス材料の機能 発現を分析・解析するためのXAFS分光法の利用 平成22年8月27日(金)

なゼガラス構造を調べるのか? - 酸化物ガラスの機能発現と構造 -

▶ 酸化物の機能特性の発現の理由(構造単位および長距離構造)ならびにガラスにおける発現の有無

特性	ガラスの例	発現の	の理由	ガラフにおける発明の样子
		構造単位	長距離構造	カノスにわける光況の塚丁
[光物性]				
透明性	酸化物ガラス	0		結晶と同様に透明
光吸収	遷移金属着色ガラス	0		結晶と同様着色
蛍光	希土類含有ガラス	0		結晶中と同様
レーザー	Nd ³⁺ 含有ガラス	0		結晶中と同様
[電子物性]		0		
アルカリイオン 伝導	Na ₂ O-CaO-SiO ₂ ガラス	0		結晶と同様に空孔を経てイオ ンが拡散
超イオン伝導	AgI-Ag ₂ O-MoO ₂ ガラス	0	0	結合の弱いAg ⁺ が伝導に寄与。 拡散経路有り。

 ・光ファイバー、光導波路ガラス、ガラスレーザー、フォトクロミックガラス、非線形光学 ガラス、アップコンバージョン蛍光ガラス、光化学ホールバーニングガラス、生体医療用 ガラス、マシナブルガラス、

・オキシナイトライドガラス、ハライド化合物ガラス、カルコゲナイド化合物ガラス
・超急冷法、気相経由法、ゾル・ゲル法、イオン注入法

石英ガラスの構造を調べる。

ガラス物質の実験的な構造解析手法

• Experimental techniques

- > X-ray diffraction ⇒ SPring-8
 - Wide-range X-ray diffraction (WAXD)
 - Energy dispersion X-ray Diffraction (EDXD)
- > Neutron diffraction => J-PARC
 - Time-of-flight (TOF) neutron scattering
 - Isotopic substitution

> <u>X-ray absorption fine structure (XAFS)</u> => SPring-8

- Extended X-ray absorption fine structure (EXAFS)
- X-ray absorption near edge structure (XANES)
- > Anomalous X-ray scattering (AXS) => SPring-8
- > Solid state NMR spectroscopy
- > Raman and Infrared spectroscopy

E (eV)

Mn K-edge

XAFS分析の対象は?

- 非結晶物質の局所構造解析に必須の分析ツール
 XAFSでないと情報が得られない系が多数存在
- 広範な測定対象
 - ▶ 触媒

光触媒、排ガス処理触媒、水素吸蔵・放出に関わる触媒

▶ 材料

発光材料、電池の電極材料、機能性ガラス材料、高耐久性鋼材 ▶ デバイス

透明導電膜、絶縁膜、光記録デバイス材料

▶ 環境関連物質

焼却炉焼却灰、汚泥・汚水・土壌処理、生体内蓄積物質

- ▶ ヘルスケア関連 歯磨き粉
- 反応下の状態のin-situ計測
 - ▶ 触媒、燃料電池電極、焼却炉燃焼
 - ▶ 反応速度論

The 5th international conference on BORATE GLASSES, CRYSTALS AND MELST, July 10-14, 2005, Trento, Italy

a) K. Handa, N. Ohtori, Y. Iwadate, N. Umesaki and H. Iwasaki: "XAFS Studies of Alkaline-Earth Borate Glasses", Jpn. J. Appl. Phys., 38 (1999) Suppl. 38-1, 148-151.
b) N. Ohtori, K. Takase, I. Akiyama, K. Handa, Y. Iwadate and N. Umesaki: "An MD Study of the Short Range Structure of RO·*x*B₂O₃ Glasses: R=Mg, Ca, Sr and Ba; x=1, 2, 3 and 4", Third International Conference on "BORATE GLASSES, CRYSTALS & MELTS", 4-9 July, 1999, Sofia, Bulgaria p. 468-473.

Glass	i-j	r_{ij} (Å)	N_{ij} (atoms)	$(\delta_{ij}^2)^{1/2}$ (Å)	Method
CaO·2B ₂ O ₃ $r_{Ca}^{2+}+r_{O}^{2-}=2.39$ Å	B-O	1.39/1.38	3.21/3.29	-	ND/MD ^{a)}
	Ca-O	2.40±0.01/2.34	6.0±0.2/6.64	0.105±0.01/-	EXAFS ^{a)} /MD ^{b)}
	0-0	2.41/2.40	4.2/4.1		ND/ MD ^{a)}
	B-B	2.74	3.5	-	MD ^{a)}
CaO·4B ₂ O ₃	B-O	1.38/1.38	3.11/3.11	-	MD ^{a)}
	Ca-O	2.41±0.01/2.35	6.0±0.2/6.66	0.106±0.01/-	EXAFS ^{a)} /MD ^{b)}
	0-0	2.40/2.39	4.4/4.0	-	MD ^{a)}
	B-B	2.72	3.8	-	MD ^{a)}

FIG. 2. The absolute values of Fourier transforms (FTs) of k^3 weighted XAFS oscillations (|F(r)|) of Zr30-H0 (upper solid lines), Zr30-H11 (upper dotted lines), Zr40-H0 (lower solid lines), and Zr40-H11 (lower dotted lines) at the (a) Ni, (b) Nb, and (c) Zr K-edges. The FT ranges analyzed are 2.7 -13.3 Å⁻¹, 3.0 - 12.0 Å⁻¹, and 2.9 -13.5 Å⁻¹, for Ni, Nb, and Zr K-edges, respectively.

Zr30-H0: $Ni_{42}Nb_{28}Zr_{30}$ Zr40-H0: $Ni_{36}Nb_{24}Zr_{40}$ Zr30-H9: $(Ni_{42}Nb_{28}Zr_{30})_{0.91}H_{0.009}$ $(Ni_{36}Nb_{24}Zr_{40})_{0.89}H_{0.11}$ Zr_sNi_sNb₃ 2.54 - 2.55 Å (2.59 Å for Zr40-H11) 2.63 - 2.64 Å 3.24 - 3.25 Å (3.33 Å for Zr40-H11)

FIG. 3. Cluster models having the icosahedral structure with the chemical compositions of Zr_6Ni_6Nb (a), and $Zr_5Ni_5Nb_3$ (b, c). The sites which can be occupied by hydrogen atoms are also indicated by small blue circles. The bond-lengths obtained by the XAFS analysis are indicated in the bottom part.

H.Oji, K. Handa, J. Ide, T. Honma, S. Yamaura, A. Inoue, N. Umesaki, S. Emura and M. Fukuhara: J. Appl. Phys. **105**, 113527 (2009).

XANESの特徴

内殻軌道から色々な空軌道への遷移に対応

リチウムイオン電池の正極材料

- ① 高電圧発生(高酸化力)
- ② 高重量エネルギー密度
- ③ リチウム含有
- ④ 高体積エネルギー密度
- ⑤ 優れた可逆性(リチウム脱挿入と酸化還元)

● リチウムイオン

● 後期3d遷移金属イオン:軽量で有り、より 深い準位での酸化還元反応による強い酸化力

これらのカチオンを固体とするためのカウン
 ターアニオン:酸素

Electrode	Average Voltage	Density	Theoretical	Theoretical Capacity	
	[V]	[g/cc]	[Ah/kg]	[Ah/I]	
Li _x CoO ₂ (0.5 <x<1)< td=""><td>3.7</td><td>5.1</td><td>137</td><td>699</td></x<1)<>	3.7	5.1	137	699	
$L_{1_x}Mn_2O_4$ (0 <x<1)< td=""><td>4.0</td><td>4.2</td><td>148</td><td>622</td></x<1)<>	4.0	4.2	148	622	
LI _x FePO ₄ (0 <x<1)< td=""><td>3.4</td><td>3.6</td><td>169</td><td>608</td></x<1)<>	3.4	3.6	169	608	
$L_{I_x}FeSiO_4$ (1 <x<2)< td=""><td>2.8</td><td>3.2</td><td>166</td><td>531</td></x<2)<>	2.8	3.2	166	531	
(0 <x<2)< td=""><td>2.8</td><td>3.2</td><td>332</td><td>1062</td></x<2)<>	2.8	3.2	332	1062	
$\text{Li}_x\text{FeBO}_3 \ (0{<}x{<}1)$	2.6	3.5	220	770	
LI _x C ₆ O ₆ (2 <x<6)< td=""><td>2.5</td><td>1.8</td><td>589</td><td>1060</td></x<6)<>	2.5	1.8	589	1060	
Aır	3.3	N.A.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00	

(a) LiCoO₂

(b) LiMn₂O₄

(c) LiFePO₄

山田淳夫: "正極材料設計の考え方", 第50回電気化学セミナー, 電気化学関西支部, 2010.7.5-6, p.11-21.

XANESスペクトルの解析法

□ 電子状態計算法

- 第一原理計算:様々な手法
 - □ OLCAO法(DV-X α 法), FLAPW+lo法(WIEN2k)
- 物性との対応が直接的
- 高エネルギー側(吸収端より上50eV)の計算が困難

□ 多重散乱法

- FEFF8コードなど:原子を球形ポテンシャルで近似
- 高エネルギー側のEXAFS領域との対応が明瞭
- 低エネルギー領域の精度に少々難あり。

OLCAO : orthogonalized linear combination of atomic orbital FLAPW+lo : full-potential linearized augmented plane-wave + local orbital

第一原理バンド計算法による XANESスペクトルの解析

Comparison of Fe K-edge XANES spectra of α -Fe₂O₃ (a) experiment and (b) calculation.

図2 バンド計算から求めたK吸収端前の プレ エッジピーク(a) α -Fe₂O₃ (hematite), (b) NaFeSi₂O₆ (aegirine), (c) FeAlPO₄ (Fe-berlinite)

EuOのXANESスペクトル

ガラス構造を調べる手段は、動径分布関数が最適 (radial distribution function, r.d.f.)

SiO2ガラスの構造

SiO2ガラスにおけるX線回折とパルス中性子回折から得られる干渉関数(*interference function*) Q·*i(Q)*の比較

Figure 23 Mozzi and Warren's [55] X-ray data for vitreous silica. The vertical dashed line indicates the change from Cu K_{α} to Rh K_{α} radiation.

シンクロトロン放射光を用いた 高エネルギーX線回折

高エネルギーX線を用いる事により、ランダム 系物質の回折パターンを高いQ値まで統計精度 良く測定が可能になる。

高いQをどうやって実現するか?

$$Q = \frac{4\pi \sin \theta}{\lambda}$$

$$Q: 散乱ベクトル (Å^{-1}) \\ \theta: 回折角 (°) \\ \lambda: X線の波長 (Å)$$

$$4\pi r^2 \rho(r) = 4\pi r r^2 \rho_0 + \frac{2r}{\pi} \int_{Q_{\min}}^{Q_{\max}} Q \cdot i(Q) \sin r Q dQ$$

波長の短いX線 → 高エネルギーX線が必要

The 5th international conference on BORATE GLASSES, CRYSTALS AND MELST, July 10-14, 2005, Trento, Italy

Structure of Alkaline-Earth Borate Glasses

Motives of research

- A) Network structure of B_2O_3 glass
- B) Structural relationship between borate glass and melt
- C) Structure of alkali/alkaline earth borate glasses
- D) Effect of the alkali/alkaline earth oxides on the short-range order structure of borate networks

Fig. 9 Superstructural units occurring in anhydrous binary crystalline borates.

HIGH ENERGY X-RAY STUDY ON THE STRUCTURE OF VITREOUS B₂O₃

K. Suzuya, S. Kohara, Y. Yoneda and N. Umesaki: Phys. Chem. Glasses, 41 (2000), 282.

The High energy X-ray (40-300keV) diffraction (HEXRD) measurement on the B₂O₃ glass has been carried out at 41keV, using a bend magnet beam at SPring-8 and a plate sample, 2.6mm in thickness. The sample is investigated in transmission geometry. Thus, the accurate structure factor S(Q) of B₂O₃ glass in the Q range of $0.9 \text{ Å}^{-1} - 24.3 \text{ Å}^{-1}$ is on obtained with very systematic corrections, especially for very small absorption correction for the sample.

The 5th international conference on BORATE GLASSES, CRYSTALS AND MELST, July 10-14, 2005, Trento, Italy

HIGH ENERGY X-RAY STUDY ON THE STRUCTURE OF VITREOUS B₂O₃

K. Suzuya, S. Kohara, Y. Yoneda and N. Umesaki: Phys. Chem. Glasses, **41** (2000), 282.

Fig. 6 Bond angle distribution for B_2O_3 glass

SPring

FSDP:First Sharp Diffraction Peak

RDFからPDF (atomic pair density function) として様々な物質の構造評価 SPring. への拡張

Figure 6.5. Fits of structural models of PbZrO₃ to neutron powder diffraction data taken at SEPD at T = 10 K model. (a) Rietveld refinement carried out in *Q*-space. (b) Real-space fit to the PDF from the same data (Teslic and Egami, 1998).

Structural Models of Oxide Glasses

• Modeling of oxide glasses

> Debye scattering equation

$$Q \cdot i(Q) = \sum_{i=1}^{m} \sum N_{ij} \exp\left(-b_{ij}Q^2\right) f_i(Q) f_j(Q) \frac{\sin(Qr)}{r_{ij}}$$

> Molecular dynamics (MD) simulation

$$u_{ij} = \frac{Z_i Z_j}{r_{ij}} + f_0 (b_i + b_j) \exp\left[\frac{a_i + a_j - r_{ij}}{b_i + b_j}\right]$$

> Reverse Monte Carlo technique

$$\chi_n^2 = \sum_{i=1}^m \left[A_n^C(Q_i) - A^E(Q_i) \right]^2 / \sigma^2(Q_i)$$

Structural Models of Oxide Glasses by MD Method

STRUCTURAL STUDIES OF *x*mol%K₂O-B₂O₃ (x=0, 10 and 30) GLASSES AND MELTS

N. Umesaki, D. A. H. Cunnigham, K. Handa and Y. Iwadate: "Cation and Network Structure in Binary Potassium Borate Glasses", Borate Glasses, Crystals & Melts, ed. By A. C. Wright, S. A. Feller and A. C. Hannon, The Society of Glass Technology, Sheffield, (1997), p. 99-106.

Table 2Short-range order (SRO) parameters for K2O-B2O3 glasses and melts obtained from
neutron/X-ray diffraction, EXAFS and MD results.

Glass/Melt	i-j	r _{i−j} /Å	N _{i-j} /atoms	$({\sigma_{i \cdot j}}^2)^{1/2}$ /Å	Method	
$[B_2O_3]$	B-O	1.38/1.37	3.0/3.0	0.14/0.18	ND [10]	
		1.37	3.0	0.126	XRD	2
		1.36	3.0	-	MD 83+	K.
	O-0	2.40/2.38	-	-	ND [10] 🔎	
		2.38	4.0	-	MD	
	B-B	2.64	3.0	_	MD	2000 Like a 2000 Like
<u> </u>	-B - O = 119	$9.32^{\Box} \pm 4.34^{\Box}$	⊈B − O − B	$2 = 151.07^{\Box} \pm 13.52^{\Box}$	୍ଦି	So a contraction of the second s
$[10\% K_2 O-B_2 O_3]$	B-O	1.39/1/39	3.1/3.1	-	ND 😡 (of the of the of
	O-O	2.40/2.39	-	-	ND Cos	
$[K_2O\cdot 4B_2O_3]$	B-O	1.37 (1.48)	3.0 (4.0)	0.143 (0.155)	XRD	
		1.38	3.2	-	MD 📆	For the the the
ЩØ	-B - O = 11	$8.92^{\Box} \pm 5.07^{\Box}$	$\mathbb{Z}\mathbb{B} - O - I$	$B = 150.15^{\Box} \pm 14.47^{\Box}$	96	to do be be do
	0-0	2.36	4.0	0.15	XRD 🕉	a see on a second
		2.40	4.2	-	MD ©	000 20 1 0000 281
	К-О	2.86±0.02	6.8±0.5	0.153±0.02	EXAFS	0°00%54 00° 884
K-O: r_{V}^{+}	$+r_0^2 = 2.73$ Å	2.83	6.0	0.182	XRD	0 0 0
K	0	2.74	6.1	-	MD	Fig. 3 Stereoscopic snapshot of the
$[30\% K_2 O-B_2 O_3]$	B-O	1.42/1.40	3.4/3.4	0.23/0.23	ND	ions in $K_2O \cdot 2B_2O_3$ glass at
$[K_2O \cdot 2B_2O_3]$	B-O	1.38	3.3	—	MD	298K.
	0-0	2.40	4.6	-	MD	
μ	-B - O = 115	$5.23^{\Box} \pm 6.41^{\Box}$	$\mathbf{Z} \mathbf{B} - O - B$	$r = 148.70^{\Box} \pm 14.52^{\Box}$		
	K-O	2.83±0.04	5.9±0.4	0.100±0.02	EXAFS	
		2.74	6.6	-	MD	

XRD: X-ray diffraction; ND: neutron diffraction

粉末XRDとEXAFSを用いたRMC法による構造モデルの最適化

Fig. 2 Three-dimensional atomic view of the initial NaCl type structure (left-hand side) and relaxed structure by RMC moves (right-hand side).

Figure 5. The RMC results (XRD and Ge EXAFS) for sample no.7 with the addition of the conditions of *frozen* Ge, *frozen* Sb and *frozen* Ge and Sb for a-GST. The symbols represent experimental data and the lines are for the RMC model.

Figure 6. The $g_{ij}(r)$ and $S_{ij}(Q)$ obtained from the result for sample no. 7. The corresponding $F^{M}(Q)$ and $\chi^{M}(k)k^{3}s$ are shown in figure 4.

SPring-8利用推進協議会 研究開発委員会 SPring-8ガラス・セラミックス研究会(第1回)—ガラス・セラミックス材料の機能 発現を分析・解析するためのXAFS分光法の利用 平成22年8月27日(金)

共用BL及び専用BLの利用制度(概要)^{SPrime}。

SPring-8 ビームラインマップ

2010.5.17 現在

産業利用の利用制度

利用制度の具体化 ◆産業利用向けた制度の構築 ⇒適時,計画性,継続性,即時性を満たす**柔軟な利用形態へ** ◆具体的内容 ← 「重点産業利用課題」 ▶年4回公募… 2007B期から運用開始(07年9月 第2期募集, 12月BT配分) ⇒3本の産業利用ビームラインに適用 ▶ 通年課題 ··· 2007B期の第2期公募から

▶成果公開延期 … 最大2年間の報告書公開を延期

⇒ 延期終了時点での報告で明確化

▶<u>測定代行</u> … 2007B期の第2期公募時期に合わせて開始 ⇒ 手法:XAFS(産業利用ⅡビームラインBL14B2) 本格実施中 粉末X線回折(産業利用ⅠビームラインBL19B2) 本格実施中

支援組織 (要員)

コーディネーター・研究技術支援スタッフの業務内容

ご清聴ありがとうございます。

質問や相談がございましたら、気軽にお 聞きください。