2011 02/25 金属材料評価研究会@化学会館

光電子顕微鏡でこんなことができる 鉄隕石の構造解析から金属材料への今後の展開

Principle

Application

百聞は一顕にしかず

財団法人 高輝度光科学研究センター はやぶさサンプル初期分析チーム JST-CREST

低炭素化社会へむけた材料開発が盛んに行われている

→ グリーンナノテクノロジーへの貢献

Rapid increase of areal density in electro-devices

2007	ノーベル化学員 2007	ノーベル物理学賞 2010
Prof. Peter Grünberg	Prof. Gerhard Ertl	Prof. Andre Geim
巨大磁気抵抗効果の発見 Ferro-mag.	プラチナの触媒効果	グラフェン
Antiferro-mag. Antiferro-mag. 4 5 6 7 8 W. Kuch, M. Kotsugi et al.	L Cham Phys. 99, 9977 (4992)	111.8 eV 2 3 1 2 2 2 4 5 5 10.0 141.0 142.0 Start voltage (V)

Phys. Rev. B 79 (2009) 125437

SPELEEM *a* **SPring-8 BL17SU**

Tool for nanotechnology and related research field(s)

光電子顕微鏡(PEEM)の原理

光電子の空間分布を測定する電子顕微鏡

Ag/Si(111) hv : 530eV

Improvement in lateral resolution of SPELEEM

PEEM

 $Co_{80}Pt_{20}$ nano dots Width 50nm Spacing 200nm EB lithography

hv = 778.44eV Field of view = 2um STV = 0 V

Magnetic domain investigation on CoPt dot using MCD-PEEM (Appl. No.:2008A1681) Y. Kondo, T. Chiba, K. Taguchi(AIT), M. Kotsugi(SPring-8/JASRI)

Lateral resolution 85nm \rightarrow 22nm

LEEM

(low energy electron emission microscopy)

Pb/Cu(111) nano dots

FOV=1.86um STV=7.67V

Lateral resolution: 7.6nm

Magnetic domain images of CoPt nanodots

Magnetic domain investigation on CoPt dot using MCD-PEEM (Appl. No.: 2008A1681) Y. Kondo, T. Chiba, K. Taguchi (AIT), M. Kotsugi (SPring-8/JASRI)

Dot width 100nm MFM

Magnetic domain of 100nm CoPt dot is visible (close to MFM)

PEEM

SPring-8の紹介

Meteorite on PEEM

A new application to planetary science

Motivation

Iron meteorite is "Extraterrestrial(ET) FeNi magnetic system "

Schematic view of interface region

Iron Meteorite

Local structure analysis by PEEM(NanoXAFS)

Magnetic domain imaging by MCD-PEEM

Magnetic domain structure for various thickness of tetrataenite lamella

Summary

Current research

レアメタルフリーL1₀-FeNiのアプリケーションへの利用

Experimental

Magnetic domain of L1₀-FeNi and FeNi

Magnetic domain of L1₀-FeNi vs. SR incident

In-plane and out-of-plane component

面直成分を確認

Summary

地球外物質である鉄隕石の磁気特性を PEEMを用いてナノスケールで解析&議論した。

界面で互いに正対する新奇な磁区構造を発見した。

マイクロマグネティックスシミュレーションにより 界面に偏析したL1₀-FeNiに起源する事が示唆された。

L1₀-FeNi**は通常の**FeNi**に比べて劇的に高い** 磁気異方性を示す事に着目した。

MBEを用いて人工的にL1₀-FeNiの創製を行なった。

L1₀-FeNi**人工膜における磁区構造で** 面直成分を確認することができた。