第11回 ヘルスケア研究会 (2011年4月12日(火),新梅田研修センター)

マイクロビーム小角X線回折法による 食品エマルションの微細構造の解明

広島大学大学院生物圏科学研究科 上野 聡

油脂分子:トリアシルグリセロール

鎖長構造 (ラメラ構造)

トリアシルグリセロール

R~12, 16, 18 が多い

2. 油脂結晶化と食品の品質制御

固体脂食品:マーガリン,チョコレート,アイスクリーム, ホイップクリーム,冷凍食品など

油脂の機能性:

- ・チョコレートにおけるV型多形(良好な口溶け,型離れの良さ(収縮率の良さ)
- ・マーガリンにおける緻密なネットワーク構造(次のスライド)(高い
- ・ホイップクリームにおける気泡の安定化

展延性

固体脂の劣化: チョコレートのブルーム現象 マーガリンの粗大結晶化など

固体脂食品における油脂の機能性や劣化防止: 油脂結晶化の理解が欠かせない

マーガリンの SEM 像

的 Ħ

放射光マイクロビームX線回折法を用いた 食品エマルションの微細構造の研究について 二例紹介する.

(1) ファットスプレッド (W/Oエマルション)における 粗大結晶の構造解明

L. Tanaka et al., Food Biophysics, 4, 331-339 (2009).

(2) コーヒークリーム (O/Wエマルション)における 油滴中の油脂結晶化 S. Arima et al., *Langmuir*, **25**, 9777-9784 (2009).

油脂結晶の空間的な解析

G. Mazzanti (2004)

マイクロビームX線回折装置系 (Photon Factory BL-4A)

BL-4A station at Photon Factory, Tsukuba, Japan

なぜ小角散乱(SAXS)/広角散乱(WAXS)同時測定なのか?

鎖長構造

1ラメラを形成するのに 要する脂肪酸鎖の数

副格子構造

炭化水素鎖の横方向のパッキング

小角領域と広角領域の回折パターンが同時に得られる=多形の同定

マイクロビームX線回折法による微細構造解析

マイクロビームX線回折法による鎖長構造の回折ピーク

マーガリン・ファットスプレッドの問題点

マーガリンの SEM 像

(5 °C)

マイクロビーム測定1: 粗大結晶以外の場所

(b)

 2θ (degree)

マイクロビーム測定2:粗大結晶

 2θ (degree)

内側

 2θ (degree)

1

2

(1) 結晶多形: β-3 and β'-2 の由来は何か?

	TAG (polymorph)	Melting point (°C)			
	ΡΟΡ β-3	36.7			
パーム油	ΡΡΡ β- 2	66.4			
	ΡΡΡ β'-2	56.6			
	ΡΟΡ+ΡΡΟ β'-2	29.0			
ナタネ極度硬化油	SSS β'-2	60.0			

(2) 粗大結晶の構造?

二層構造

内核: PPP, SSSなど高融点油脂(多形: β'-2) POPなど低融点油脂(多形: β-3 + β'-2) 外郭: POP (多形: β-3) が支配的

互いに溶解しないふたつの物質の液体状態において、一方 の液体がもう一方の液体中に小さな液滴となって分散したもの

O/W エマルションにおける油脂結晶化

・バルク系とエマルション系の相違

・バルク系とエマルション系の油脂結晶化

O/W エマルションにおける油脂結晶化

油脂結晶化によりO/Wエマルションが不安定化する現象

エマルションの不安定化を避けるには油脂結晶化(核形成と結晶成長)を抑 制することが重要

油脂結晶化によりO/Wエマルションが不安定化する現象

エマルションの不安定化を避けるには油脂結晶化(核形成と結晶成長)を抑 制することが重要

放射光マイクロビームX線回折測定による O/Wエマルション中の油脂結晶化の構造解析

ラメラ面の方向

実験試料と調整方法

試料

界面活性剤: Tween 80 [SIGMA-ARDRICH] 脂肪酸鎖: オレイン酸 (C:18-1) (2 wt. %) 添加剤: ショ糖脂肪酸エステル (P-170) [Mitsubishi chemical Co.] 脂肪酸鎖: パルミチン酸 (C:16) (0.2 wt. %)

- emulsified by only Tween80 = TW80 emulsion
- emulsified by Tween80 and P-170
 =TW80+P-170 emulsion

平均粒系:38.1µm

TW80 エマルションの放射光マイクロビーム測定結果

		0	0	0	0	0	0	0	0	0		
	0	0	0	0		G O	-60	0	0	0	0	
0	0	H_0_	.3	6	6	\odot	6)	6)	F.Q.	0	0	0
0	0		\bigcirc	$\left(\right)$	()		1	()	6)	0	0	0
0	0	(\circ)		\bigcirc	$\left(\begin{array}{c} \end{array} \right)$		\bigcirc	\bigcirc	\bigcirc	201	0	0
0	0)	()	\bigcirc	\bigcirc	()	5.3	9	5	6		10	0
0	0	A	\bigcirc	\bigcirc	6	5	\bigcirc	0	\bigcirc	(0)	EO	0
0	(0)	(0)		()	()	$\left(\right)$	\bigcirc	0	6	3	0	0
0	0	,Ó,	(\circ)	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	0	0	0
0	0	Bo	0	() ()	0	6	\bigcirc	\bigcirc	Do	0	0	0
	0	0	0	0	0	C _O	0	0	0	0	0	
		0	0	0	0	0	0	0	0	0		

TW80+P-170 エマルションの放射光マイクロビーム測定結果

典型的な3種のX線回折パターンの3次元像と方位角展開解析結果

エマルション油滴のマイクロビームX線回折測定結果の方位角展開

油水界面と油脂結晶のラメラ面の方向との関係

•TW80 emulsion

position	χ value (deg.)	Δχ (deg.)
А	80, 132, 260, 312	23.9, 12.5, 26.7, 17.7
В	45, 225	19.9, 24.0
\mathbf{C}	116, 296	46.0, 43.7
D	140, 320	27.0, 30.0
Ε	100, 280	22.5, 42.1
\mathbf{F}	10, 62, 124, 190, 242, 304	9.4, 8.8, 28.3, 3.8, 13.4, 31.5
G	24, 162, 204, 342	3.9, 25.2, 3.6, 43.4
Н	56, 144, 236, 324	35.4, 32.3, 31.5, 33.3

--・方位角 χ には解析位置の変化
 --・に伴う一様な変化は見られない
 ・方位角の半値幅 Δχ は大きい

油脂結晶のラメラ面の方向は 油水界面から影響を受けない

•TW80+P-170 emulsion

position	χ value (deg.)	Δχ (deg.)	$$ •万位角 χ は解析位置の変化に
А	12 , 140, 192 , 320	12.2 , 28.0, 12.0 , 6.3	— い20-60°の範囲で一様に変化
В	70, 250	11.2, 10.6	 ・方位角の半値幅 Δχ は比較的小
С	54, 90 , 234, 270	22.4, 5.7 , 25.8, 6.5	さな変化
D	102, 146 , 282, 326	23.9, 13.5 , 32.5, 15.4	
Ε	46, 176 , 226, 356	9.3, 9.1, 12.1, 12.4	
\mathbf{F}	38 , 58, 218 , 238	11.6 , 20.4, 12.7 , 20.0	油脂結晶のラメラ面の方向は
G	46, 226	14.4 , 16.3	油水界面から影響を受けてい
Η	92, 144 , 272, 324	8.2 , 16.7, 15.8, 21.2	る(ラメラ面は油水界面に平行)

TW80 emulsion (脂肪酸鎖:不飽和脂肪酸鎖)

- •油脂の結晶化:油水界面でおよび油滴内部でランダムに結晶化
- ・脂肪酸鎖は結晶化に影響しない

TW80+P-170 emulsion (脂肪酸鎖: 不飽和脂肪酸鎖および飽和脂肪酸鎖)

- •添加剤(P-170)による油水界面での鋳型形成
- •油脂の結晶化:油水界面で鋳型に沿って結晶化(ラメラ面は界面に平行)

放射光マイクロビームX線回折法を用いた 食品エマルションの微細構造の研究について 紹介を行った.

 (1) ファットスプレッド (W/Oエマルション)における 粗大結晶の構造解明
 (2) コーヒークリーム (O/Wエマルション)における 油滴中の油脂結晶化

- →いずれの場合も、偏光顕微鏡観察等により 結晶化に関する間接的な証拠はあったが 直接調べる術がなかった
- →マイクロビームX線回折法により、直接観察が 可能となった