

2012/09/11 SPring-8 第4回粉末材料構造解析研究会一材料構造解析のための最新手法情報-

放射光を用いた水素貯蔵材料の精密構造解析

(独)産業技術総合研究所 ユビキタスエネルギー研究部門

竹市 信彦 境 哲男

(社)日本化学会 化学会館

水素貯蔵材料に望まれる性質

▶高い質量水素密度

- ▶高い体積水素密度
- ▶小さい水素化エンタルピー

▶適当な平衡水素解離圧

▶密度

1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18

Li
Be
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
<

軽金属元素(Li,Mg,Al,Ca...)を主原料とした貯蔵材料が注目される

LiH: 12.7 質量%、MgH₂: 7.6質量%、AlH₃: 10質量%

水素貯蔵材料としてMgの特徴をどう向上させる カルアの特徴

- イオン結合性+共有結合性
- MgH2の電荷分布図 MgHっの結晶構造

空間群: P42/mnm (136) a=0.45180(6) nm c=0.30211(4) nm

Mg-H 0.194 nm Mg-H 0.197 nm H-H 0.252 nm

(b)

(T. Noritake et al. : Appl. Phys. Lett. 81 (2002) 2008.)

- 結晶子サイズ及び粒径の微細化
- 触媒元素の添加
- 他金属元素との合金化

- 一般的な、材料作製方法としては 以下の方法が列挙できる。
- ▶熔解法
- ▶ボールミリング法
- ▶バルクボールミリング法
- ▶積層圧延法
- ▶招高圧合成法

超高圧による新規物質の合成

超高圧合成GPa(ギガパスカル)の圧力とは?

地球の内部構造

<image>

月の中心の圧力:約5GPa

超高圧水素による効果

1GPa付近で水素の固溶度が急激に増大

マルチアンビルを用いた超高圧合成法

超高圧合成法で合成されたMg-TM水素化物

TM	3	4	5	6	7	8	9	10
3d	Sc Mg ₇ ScH _x	Ti [9,10,17,18] Mg ₇ TiH _x	V [11,20] Mg ₆ VH _x	Cr [7,8] Mg ₃ CrH ₆	Mn [5,6] Mg ₃ MnH ₆ Mg ₃ MnH ₇	Fe Mg₂FeH ₆	Co Mg ₂ CoH ₅ Mg ₆ Co ₂ H ₁₁	$\begin{array}{c} \text{Ni} \\ \text{[1-4]} \\ \text{Mg}_2 \text{NiH}_4 \end{array} \\ \begin{array}{c} \text{MgNi}_{1.02} \text{H}_{2.2} \\ \text{Mg}_2 \text{Ni}_3 \text{H}_{3.4} \end{array}$
4d	Y MgY ₂ H _{7.8}	Zr [15,16,19] Mg ₆ ZrH _x MgZr ₂ H _y	Nb [12,13] Mg _{6.5} NbH _x MgNb ₂ H _y	Mo Mg ₃ MoH _x	Тс	Ru Mg ₂ RuH ₄ Mg ₃ RuH ₃	Rh	Pd Mg-Pd-H
5d	La Mg ₃ LaH ₉	Hf <mark>[15]</mark> Mg ₇ HfH _x MgHf ₂ H _y	Ta [14] Mg _{6.3} TaH _x Mg ₃ TaH _y	W	Re Mg₃ReH ₇	Os	lr	Pt

赤色で色分けした化合物が、我々の研究グループで発見した新規水素化物である。

Mgと化合物を形成しない系(TM:Ti,V,など)において、Mg-TM-H 3元水素化物が存在することがわかった。

References

- 1) J. Chen, T. Sakai, N.Kitamura, H. Tanaka, H.T. Takeshita, N. Kuriyama, D. Harimoto, H. Nagai, Y. Fukai, *J. Alloys Comp.*, **307**, (2000) L1.
- 2) J. Chen, T. Sakai, N.Kitamura, H.T. Takeshita, N. Kuriyama, J.Am. Chem. Soc., 123 (2001) 6193.
- 3) J. Chen, T. Sakai, N.Kitamura, H. Tanaka, T. Kiyobayashi, H.T. Takeshita, N. Kuriyama, J. Alloys Comp., **330-332**, (2002) 162.
- 4) S.Yamamoto, Y. Fukai, E.Rönnebro, J. Chen, T.Sakai, J. Alloys Comp., 356-357, (2003) 697.
- 5) D. Kyoi, E.Rönnebro, H. Blomqvist, J. Chen, N. Kitamura, T. Sakai, h. Nagai, Mater. Trans., 43, (2002) 1124.
- 6) H. Blomqvist, E.Rönnebro, D. Kyoi, T. Sakai, D. Noréus, J. Alloys Comp., 358, (2003) 82.
- 7) D. Kyoi, E. Rönnebro, N. Kitamura, A. Ueda, M. Ito, S. Katsuyama, T. Sakai, J. Alloys Comp., 361, (2003) 252.
- 8) E. Rönnebro, D. Kyoi, H. Blomqvist, D. Noréus, T. Sakai, J. Alloys Comp., 368, (2004) 279.
- 9) D. Kyoi, T. Sato, E. Rönnebro, N. Kitamura, A. Ueda, M. Ito, S. Katsuyama, S. Hara, D. Noréus, T. Sakai, J. Alloys Comp., 372, (2004) 213.
- 10) E. Rönnebro, D. Kyoi, A Kitano, Y. Kitano, T. Sakai, J. Alloys Comp., 404-406, (2005) 68.
- 11) D. Kyoi, T. Sato, E. Rönnebro, Y. Tsuji, N. Kitamura, A. Ueda, M. Ito, S. Katsuyama, S. Hara, D. Noréus, T. Sakai, J. Alloys Comp., **375**, (2004) 253.
- 12) T. Sato, D. Kyoi, E. Rönnebro, N. Kitamura, T. Sakai, D. Noréus, J. Alloys Comp., 417, (2006) 230.
- 13) D. Kyoi, N. Kitamura, H. Tanaka, A. Ueda, S. Tanase, T. Sakai, J. Alloys Comp., 428, (2007) 268.
- 14) D. Kyoi, T. Sakai, N. Kitamura, A. Ueda, S. Tanase, J. Alloys Comp., 463, (2008) 306.
- 15) D. Kyoi, T. Sakai, N. Kitamura, A. Ueda, S. Tanase, J. Alloys Comp., 463, (2008) 311.
- 16) T. Takasaki, D. Kyoi, N. Kitamura, S. Tanase, T. Sakai, J. Phys. Chem. B, 111, (2007) 14102.
- 17) T. Takasaki, T. Mukai, N. Kitamura, S. Tanase, T. Sakai, J. J.Phys. Chem.C, 112 (2008) 12540.
- 18) T. Takasaki, T. Mukai, N. Kitamura, S. Tanase, T. Sakai, J. Alloys and compounds, 494 (2010) 439.
- 19) X. Yang, N. Takeichi, K. Shida, H. Tanaka, N. Kuriyama, T. Sakai, J. Alloys Comp., 509, (2011) 1211.
- 20) N. Takeichi, J. Yan, X. Yang, K. Shida, H. Tanaka, T. Kiyobayashi, N. Kuriyama, T. Sakai, *J.Power Source*, **210** (2012) 158.

Mg-TM水素化物のX線回折パターン

新規相のピークインデックス

Mg, TM: 4a

4b サイト

原子空孔率(%)

9

100

51

41

72

FCC超格子構造における水素原子位置~Mg₇TiH_x~

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

FCC超格子型水素化物の水素放出特性(TPD)

水素貯蔵特性~Mg₆VH_x相~

4元系Mg基水素化物の探索

6MgH₂-VH₂-*n*NaH 試料のSR-XRDプロファイル

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Mg-Zr-(Li, Na)水素化物のSR-XRDプロファイル

Mg-Zr-K水素化物の結晶構造

Intensity

Mg-TM-(Li, Na, K) 水素化物の結晶構造

Mg-Zr-(Li,Na,K) 水素化物の水素放出温度

 \sim P_{H2}=0.5MPa, 10K/min. \sim

Mg-Zr-(Li,Na,K)水素化物の脱水素化温度、及び、水素化温度は、各々純MgH2と比較して80K、120 K程度低下した。

まとめ

▶8GPa,600℃の条件下で、 FCC構造を有する新規水素化 物の合成に成功した。

▶放射光X線を用いることにより、水素化物中の水素の占有 位置が決定できた。

▶水素化物中の原子欠損率及び原子間距離が、水素放出温度に影響を与える。

▶PCT測定により、可逆的に4 wt. %の水素放出・再吸蔵量 を確認した