

独立行政法人產業技術総合研究所

2012/10/4(木)@東京

技術を社会へ-Integration for Innovation

3

独立行政法人 產業技術総合研究所

AIST

半導体の比較

	シリコン	化合物半導体	有機半導体
受光	0	0	0
発光	Δ	Ø	Ø
移動度(高速性)	0	Ø	Δ
高出力	0	Ø	Х
耐熱性·耐久性	Ø	Δ	Δ
柔軟性·耐衝撃性	Δ	X	Ø
三次元集積	Ø	0	0
加工性	0	X	Ø
大面積	0	X	Ø
製造エネルギー	X	X	Ø
用途	既に安定して確立されている半 導体であるため、マイコン、一般 ロジックなど通常の汎用情報処 理素子一般に用いられる。	高速、高出力、発光などを特徴と するため、主として通信関連に適 応される。	発光、受光、柔軟性、耐衝撃性、 加工性等を特徴とすることから、 主としてヒューマンインターフェー スデバイスとしての情報端末に適 応される。

有機薄膜デバイスの基本構造

a) 有機TFT

b) 有機EL

c) 有機薄膜太陽電池

・固体基板上への積層:順序と膜厚
・極薄膜への電荷注入/取り出し
・アクティブ(活性)層の構造は非晶質

技術を社会へ-Integration for Innovation

5

独立行政法人產業技術総合研究所

AIST

有機半導体の研究推移

1950年 有機半導体の発見(井口、赤松、松永)

1973年 電荷移動型錯体(TTF-TCNQ,BEDT-TTF,etc)

1976年 導電性高分子(ポリアセチレン)(Heeger, MacDiarmid, 白川) <有機金属、有機超伝導>

1983年 ポリマーFET(ポリアセチレン)(NTT: Ebisawa et al.)

1984年 有機FET(メロシアニン)(東エ大: Kudo et al.)

1985年 フラーレン発見(Kroto, Smalley, Curl)

1986年 ポリマーFET(ポリチオフェン)(三菱電機: Tsumura et al.)

く有機半導体>

1992年 ペンタセン蒸着膜FET(仏、米、日)

1995年 アルキル置換ポリチオフェン(米、カナダ、英)

2001年 H.Shoen (Lucent)のデータ捏造事件

<蒸着膜vs.塗布膜>

2006年 有機単結晶(ルブレン)

2012年 ダブルショットインクジェット法による単結晶(産総研)

技術を社会へ-Integration for Innovation

^{独立行政法人}產業技術総合研究所

技術を社会へ- Integration for Innovation

独立行政法人 **產業技術総合研究所**

非晶質基板上のペンタセン分子の配向

技術を社会へ- Integration for Innovation

11

独立行政法人 產業技術総合研究所

キャリアの流れ

AIST 有機EL製品の開発経緯 1986年 機能分離型有機ELの基本特許(Eastman Kodak) 1990年 高分子ELの基本特許(ケンブリッジ大、UCLA) 10年で製品化 1997年 エリアカラー有機ELパネル(東北パイオニア) (パッシブ駆動) <展示会での出展(試作品)> 2001年 携帯電話の表示パネル(Rit, NEC,三洋) 2002年 MP3プレイヤー(Delta) デジタルカメラ(Kodak EasyShare LS633)(三洋 く展示会での出展ラッシュ(大画面化:アクティブマトリックス> 2003年 20インチディスプレイ(ChiMei) 10年で製品化 2004年 40インチ(インクジェット)(セイコエプソン) (アクティブ駆動) 2005年 40インチ(Samsung) く有機ELパネルの市場展開><フレキシブル化> 非晶質Si·TFT 2007年 2.2インチ(Samsung) 27インチ(プロトタイプ)→11インチテレビ(ソニ-<u>2008年 31インチ(Samsung)</u>

有機ELの効率

AIST

有機太陽電池の研究開発の経緯

1970年代	ショットキー型(クロロフィル等)<0.1%
1976年	多孔性ZnO色素増感(阪大:松村)~2.5%
1986年	pn接合型(イーストマン・コダック:C.W.Tang)=1%
1991年	多孔性TiO2色素增感太陽電池
	(スイス連邦エコール工科大(EPFL):M.Graetzel)~7%
2001年	クマリン色素(色素増感) (産総研:原、荒川)=5.6%
2002年	バルクヘテロ接合型(UCSB:A.Heeger&N.S.Sariciftci)~3%
<エネル:	ギー変換値の競争(計測手法の標準化)>
2006年	フレキシブル色素増感(桐蔭横浜大:宮坂)~7%
2007年	p-i-n接合型(阪大、産総研)~3.6%
	タンデム型(p-i-n)(プリンストン大:Forrest)~7%
2008年	タンデム型(色素増感)(産総研)~11%
<u>2011年</u>	有機薄膜太陽電池(東レ、三菱化学)~11-12%
く有機太	陽電池開発の第2フェーズ:実用化を目指した開発>

有機薄膜太陽電池

技術を社会へ- Integration for Innovation

ウェット・プロセス

手法	特 徵	適用例	
塗布法(スピンコー ト、キャスト法)	成膜分子を有機溶媒に溶解し、基板表面に滴下し、製膜する (操作が容易)	ほとんどの産業用有機・高分子膜	
電解重合法	導電性高分子のモノマーを含む電解質溶液中で電極上に電解 重合させる	ポリチオフェン、ポリアニリン等、導 電性高分子	
Langmuir-Blodgett (LB)法	水面上の両親媒性分子の単分子膜を固体表面に単分子層ご とに積層する	脂肪酸等、両親媒性分子	
自己組織化膜 (SAM)法	金表面にアルカンチオール等の分子末端にSH基を有する分 子を化学(物理)吸着させた単分子膜(パターニングが可能)	アルカンチオール: <i>マイクロ(ナノ)コ ンタクトプリント</i>	
化学吸着法	シランカップリング剤等で表面修飾したガラス基板(表面は、水酸(OH)基)等へ正負のイオン性基(スルホン基(SO3ー、PO4 ー;NH3+等)を有する高分子を交互に吸着させる	クロロシリル/酸化膜へのポリイオ ンコンプレックス	
反応性吸着法	開環重合性モノマー溶液の中にグラファイトを浸析し、高分子 単分子膜を形成する:Polymerization Induced Epitaxy(PIE)	ポリエチレンオキシド(PEO)、ポリ テトラヒドロフラン(PTHF)、ナイロ ン6、等	
インクジェット法	微小液滴の極細ノズルからの噴出	色素:有機半導体、導電性高分子、 金属超微粒子の薄膜、描画	
マイクロコンタクト プリント	シリコーンゴム (PDMS)を版とするnm~μmの凸版印刷		

技術を社会へ-- Integration for Innovation

23

^{独立行政法人}產業技術総合研究所

AIST

塗布法(スピンンコート・キャスト)

電解重合法

技術を社会へ- Integration for Innovation

ICT

シリコン・フォトリソグラフィーと 有機・印刷の比較

	シリコン (フォトリソグラフィー)	有機 (印刷)
材料	製膜材料の90%以上は 除去	必要な部材を必要なところに: オン・デマンド=>省資源プロセス
プロセス	多段工程、真空·高温	高速(タクトタイムの低減)、 大気中・室温=>省エネルギー
製品	高性能ではあるが、剛直、 落とすと壊れる	ソフト、軽い、曲げることが可能 落としても壊れない
初期投入 資本	高額な電子線描画装置、 真空ラインおよび高品 質クリーンルーム	印刷装置は電子線描画装置など に比べて安く、装置内のみのク リーン化で十分

技術を社会へ- Integration for Innovation

技術を社会へ- Integration for Innovation

独立行政法人產業技術総合研究所

技術を社会へ- Integration for Innovation

35

^{独立行政法人} 產業技術総合研究所

AIST

各種印刷法の比較

印刷法	インク粘度 (mPa•s)or (cP)	最小/最大 膜厚 (μm)	分解能 (精細度)	印刷速度 (m²/s)
スクリーン	(2 – 30) x10 ³	10-20 / 100	20 μm	10
グラビア	50 - 500	2-3 / 25	30 μm	50
フレキソ グラフィー	100 - 1000	3-5/15	35 μm	10
オフセット	(4 – 10) x 10 ³	1 / 5	10 µm	20
インクジェット	1 - 10 4	10-20 / 100	20 μm	0.01
マイクロ コンタクト	-	1 nm / 2 μm	15–20 nm	10 ⁻⁵

AIST

AIST

マイクロコンタクトプリンター(6インチ)

マイクロコンタクトプリンター

200ppi、1,600×1,200画素、対角10 inch

ドライ・プロセス

手 法	特 徵	適用例
真空蒸着法	有機分子を高真空中(10-5~10-7 Torr)で蒸着、成膜する	色素など
有機分子線エピタキ シー(OMBE)法ま たは有機分子線蒸 着法(OMBD)法	有機分子を超高真空中(10-8~10-10 Torr)で蒸着、成膜す る(構造制御された薄膜形成が可能、表面構造・分析のその 場計測が可能)	フタロシアニン、フラーレンなど
蒸着重合法	アミド基、酸無水物、酸クロリド基などの縮合重合性モノマー の蒸着により基板表面で重合させる(高分子膜の真空成膜)	ポリイミド、ポリ尿素
摩擦転写法	不溶不融高分子を加熱した基板表面で圧延、走引する	テフロン、導電性高分子(ポリパラ フェニレン、ポリフェニレンビニレン)、 ケイ素系高分子
スパッタ法	アルゴン等の不活性ガスによる蒸発原料のターゲットからの たたき出しと基板への堆積	テフロン、ポリイミド等
化学気相堆積(CV D)法	反応性ガスの輸送による化学反応を伴う製膜	
レーザーアブレー ション法	レーザーによる原材料のたたき出し(アブレーション)	高分子基板表面の加工

技術を社会へ-- Integration for Innovation

43

独立行政法人產業技術総合研究所

AIST

AIST

蒸発分子の基板表面でのダイナミックス

KCI上のパラフィン膜の構造

CH3(CH2)38CH3

技術を社会へ- Integration for Innovation

49

d

独立行政法人產業技術総合研究所

►AIST パラフィンのエピタキシャル成長

技術を社会へ- Integration for Innovation

技術を社会へ- Integration for Innovation

AIST **Epitaxial Growth of Organic** Molecules - Misfit -

6P: a=0.65, b=0.94, c=2.68 nm (d(020)=0.47 nm)

KBr: a=0.660 nm, d(110)=0.467 nm, m=0.9 %

- KCI: a=0.630 nm, d(110)=0.445 nm, m=5.8 %
- NaCI: a=0.563 nm, d(110)=0.398 nm, m=18.3 %

ポルフィリンのエピタキシャル薄膜

Sample

- 1. PtOEP on KBr and KCI substrate at room temperature.
- 2. PtOEP on KBr and KCl substrate at 50°C.

Deposition condition

- 1. Vacuum : 2~3 X 10-6 Torr
- 2. Rate of deposition: ~0.3 Å/sec
- 3. Evaporation temperature of PtOEP: 280°C

57

独立行政法人 產業技術総合研究所

AIST ホ[°]ルフィリン/KBr(Ts=25℃)のX線回折 X-ray Diffraction Data of PtOEP Film (~100 nm) on KBr at Room Temperature. PtOEP on KBr at RT 10000 $2dsin\theta = n\lambda$ 8000 KBr {200} 20=7.860 Intensity (arb.u.) 6000 d 4000 SUBSTRATE 2000 *d*=11.239 Å (2θ=7.860) 0 10 30 20 40 50 2θ (degrees)

技術を社会へ-Integration for Innovation

AIST

ホ[°]ルフィリン/KBr(Ts=50°C)のAFM像

10

20

30

20 (degrees)

0

60

40

50

水面転写法(Wet Transfer Method)

技術を社会へ- Integration for Innovation

独立行政法人 產業技術総合研究所

AIST

AIST

C60(フラーレン)の薄膜成長

Thin Solid Films, 331(1-2), 131-140 (1998)

- ✓ C60蒸着膜:下地の影響
- ✓ アルカリハライド、雲母基板上でのエピタキシャル成長
- ✓ 欠陥導入の基板依存性
- ✓ ステップ上での優先的核発生
- ✓ 核密度のテラス幅依存性

▶ 蒸着膜のサイズ→成長速度

▶ 結晶核の面密度→拡散距離

技術を社会へ– Integration for Innovation

67

独立行政法人產業技術総合研究所

C60(フラーレン)の薄膜成長

Thin Solid Films, 331(1-2), 131-140 (1998)

- ✓ C60蒸着膜:下地の影響
- ✓ アルカリハライド、雲母基板上でのエピタキシャル成長
- ✓ 欠陥導入の基板依存性
- ✓ ステップ上での優先的核発生
- ✓ 核密度のテラス幅依存性

> 蒸着膜のサイズ→成長速度
 > 結晶核の面密度→拡散距離

AIST

有機エレクトロニクス

- ・剛直: 脆性(落とすと壊れる)
- ・高温(>千℃)
- ・大面積化には、膨大な設備投資が必要

有機もなかなかできる!! _<有機ELディスプレイの市場展開>

^{独立行政法人}產業技術総合研究所

配向制御有機薄膜デバイスの必要性

非晶質薄膜:低欠陥、再現性=>ほどほどの特性 配向制御薄膜:異方的特性=>それなりの特性 結晶性薄膜:単結晶=>理論値に匹敵する特性

くただし、薄膜全体が単結晶である必要はない!>

薄膜作製技術と薄膜構造評価技術

技術を社会へ- Integration for Innovation

71

^{独立行政法人}產業技術総合研究所

