



# a-IGZO薄膜の局所構造及び 電子状態解析

(株)コベルコ科研 エレクトロニクス事業部 安野 聡

# **Outline**

- 1. 背景 a-InGaZnO(IGZO)の特徴と課題
- 2. 研究の目的

# 研究事例の紹介

- 3. XAFSによるa-I GZO薄膜の局所構造解析
- 4. a-IGZO薄膜における諸特性の 成膜ガス圧力依存性 (HAXPES)
- 5. HAXPESによるMetal/a-IGZOの界面状態分析

# 新しいディスプレイ駆動技術(TFT)が必要

Conventional FPD

Large size, High resolution, High brightness, 3 dimensions

Next generation FPD







|                  | Present                                 | Next generation                        |  |
|------------------|-----------------------------------------|----------------------------------------|--|
| TV Pixel         | Full-High Definition (1920-1080 pixels) | Ultrahigh-Definition<br>(4k-2k pixels) |  |
| frequency        | 120Hz                                   | 240Hz                                  |  |
| Channel mobility | a−Si<br>( <b>~</b> 0.5cm²/Vs)           | Oxide (>10~20cm²/Vs)                   |  |

**Smartphone** 



**Tablet PC** 



High End TV (4k、OLED)



**Good performances of a-IGZO** 

- ·Large field effect mobility
- ·Superior uniformity
- ·Fabrication at RT
- ·High transparency

解像度、駆動フレームレートの増大によりTFT(トランジスタ)には高い移動度が要求される



a-Siに代わる新しいTFTチャネル材が必要

## アモルファス酸化物半導体

- ・(n-1)d10ns0 (非占有なs軌道を持つ)、電子配置を有する金属原子が酸素とイオン性結合
- ・酸素欠損がドナーとなり、n型のキャリア伝導を示す
- ・伝導帯下端は金属原子のs軌道で構成。球対称、空間的に拡がりが大きいため、アモルファス構造でも、構造乱れの影響を受けにくい





指向性の強いsp3混成軌道が伝導キャリアのパスを形成。歪んだアモルファス構造では、高密度で深い準位を形成する。

結晶Si 1500cm²/Vs → a-Si 1cm²/Vs





Hosono et. al., Nature, 432, 488 (2004)

# アモルファス酸化物半導体(InGaZnO、ZnSnO、InZnO)の特徴

## 高移動度、大面積性

移動度>10cm²/Vs a-Si-Hの十倍以上

大画面、高精細 への応用

#### 低温プロセス性

低耐熱(<200℃)基板上でのプロセス構築が可能 フレキシブルディスプレイへの応用

透明性(Eg>3.0eV)

可視光透明

透明エレクトロニクスへの展開



37" FHD AM-LCD

Flexible BW E-paper 5.35",VGA,150ppi (Toppan, 2009)



Scan-driver-integrated AM-OLED (LGE&ETRI,2009)



(b)  $10_{.05}^{-04}$   $10_{.05}^{-07}$   $10_{.08}^{-08}$   $10_{.09}^{-09}$   $10_{.10}^{-10}$   $10_{.11}^{-11}$   $10_{.12}^{-11}$   $10_{.13}^{-14}$   $10_{.14}^{-14}$  -5 0 5 10

10cm<sup>2</sup>/Vs近い 電界効果移動度



### ■酸化物半導体の適用アプリケーション

- 1) 超高解像度(Ultra High Definition: 4k-2k), 3D, Glassless
- 2) タブレット型PC, 高解像度350ppi
- 3) OLED

Hosono et. al., Jpn, J. Appl. Phys., 45, 4303 (2006)

# 各種TFTチャネル材料の比較

| チャネル領域                               | a-InGaZnO <sub>4</sub> | a-Si  | Poly-Si      | Organics       |
|--------------------------------------|------------------------|-------|--------------|----------------|
| 成膜方法                                 | スパッタリング                | PECVD | レーザー<br>アニール | <br>蒸 <b>着</b> |
| プロセス温度<br>(℃)                        | RT                     | 300   | 450          | 100            |
| 電界効果<br>移動度<br>(cm <sup>2</sup> /Vs) | ~12                    | 0.5   | 30~300       | ~5             |
| 透過度(%)                               | >80                    | <20   | <20          | >80            |
| 大面積化                                 | 0                      | 0     | ×            | 0              |

酸化物半導体:高移動度かつ大面積成膜可能 ⇒タブレットPC~大型TVまで広い範囲に適用

# 酸化物半導体の課題



# 酸化物半導体の課題

# 移動度の面内ばらつき



μ<sub>SAT</sub> mapping (6 inch wafer)

# プロセスダメージ



FIG. 2. (Color online)  $I_{ds}$ - $V_{gs}$  curve of an a-GIZO TFT fabricated using the conventional a-Si:H TFT process, after the source/drain pattern and the passivation pattern. The width/length of the TFT used was  $2/2 \ \mu m$ .

## 物理的解釈は?

- •TFT特性(移動度)と状態密度の関係
- ・Vthシフト要因(界面電荷トラップ、準位の発生)
- Vthの時間シフト(拡張指数型モデル)
- 光照射時の不安定性、遅い応答性
- •酸素欠損

実用化に向けた課題が多く、基本的な物理機構の解釈も進んでいない

#### 2. 研究の目的

# 研究目的

a-IGZO薄膜における物理的機構を放射光分析をはじめとした 各種評価技術を駆使して解明する。



# XAFSによるIGZO薄膜の局所構造解析

一熱処理温度依存性一

# a-IGZOを構成する各元素の特性



各金属元素の役割

- ·In 5S軌道 キャリアのパス
- ·Ga キャリアコントロール
- ・Zn アモルファス性



酸素欠損起因?

Figure 10. Schematic models of subgap DOS in (a) a-Si:H and (b) a-IGZO.

Sci. Technol. Adv. Mater. 11 (2010) 044305



- ・理論予測や電気特性の結果は整っているが、物理分析による評価事例が少ない
- アモルファス材料
- ・多元系酸化物 で分析が難しい



# **XAFS**

- ·アモルファスOK
- •元素選択性
- •配位数
- •結合距離

シミュレーションによる
欠陥や状態密度の予測

J. Appl. Phys. 105, 093712 (2009)

# 実験方法





Metal(In, Ga, Zn)-Oの 結合距離、

酸素配位数を評価する

BL14B2 一般課題/成果非占有 (2012A1759、2012B1882) にて実施

#### Local structural analysis

·X-ray absorption fine structure analysis (XAFS) SPring-8 BL14B2 Fluorescence mode In-K edge Ga-K edge

Zn-K edge

#### Physical analysis

- X-ray diffraction (XRD)
- X-ray photoelectron spectroscopy (XPS)
- Absorption spectroscopy

12

# XANESスペクトル







# In, Zn, Ga原子周りの動径構造関数





2<sup>nd</sup> Peak:各元素とも500度以上で第二隣接ピークが出現。 ⇒クラスターサイズ増大

1st Peak:In, Znの第一隣接ピークは熱処理温度に依存してピーク強度が変化。一方Gaはほとんど変化しない。

⇒酸素配位数変化

# 局所構造解析結果(1st Peak)



Ga-Oは他の金属元素に比べて 結合距離が短い



In及びZnは温度増加に伴って、 酸素配位数が増加。Gaはほとんど 変化しない。

Ga-Oは安定的に存在。酸素欠損を形成しにくい。

# 状態密度評価





熱処理温度の増加に伴って、サブギャップ準位が減少。 酸素欠損の改善や結晶性の向上が起因する可能性。

# まとめ



XAFSによりIn, Ga, Znの各元素の特性を示すことができた。 材料開発において、元素の特性評価に使用できる。

スパッタガス圧力が及ぼす a-IGZO薄膜の諸特性の評価

# ガス圧依存性

## a-IGZO TFT applicationの課題

- 安定性 (バイアス、光、熱ストレスなど)
- •信頼性
- ・プロセス工数の削減



TFTプロセス工程や成膜条件 の最適化による特性改善が重要な課題





Fig. 3  $\Delta$ Vth of a-IGZO TFTs, in which IGZO thin films are deposited with low and high pressure conditions.

Thakur et. al., Mater. Res. Bull, 47, 2911 (2012)

Nakano et. al., IDW'11 proceeding, 1271 (2011)

近年スパッタ成膜時のガス圧やO<sub>2</sub>分圧がTFT特性に大きな影響を及ぼすことが報告されている。

a-IGZO薄膜における成膜ガス圧力依存性を様々な物理評価手法により評価。

成膜ガス圧力が各種物理特性や電気特性に及ぼす影響やそのメカニズムを調べる。

## **HAXPES**

- ・膜質の主たる部分を反映する試料深部 (バルク領域)の結合状態、状態密度
- ・非破壊で評価
- ・高強度一感度が良い

19

# 実験方法

膜質の主たる部分を 反映する試料深部 (バルク領域)を非破壊 で、詳細に評価可能

#### HAXPESにより

a-IGZOのバルク領域 における結合状態、 価電子帯の状態密度を

BL47XU 重点産業利用/成果非占有 (2011A1732)にて実施

評価する。



#### **Physical analysis**

- ·X-ray diffraction (XRD)
- ·X-ray reflectivity (XRR)
- Hard X-ray photoelectron spectroscopy (HAXPES) SPring-8 BL47XU
- ·High resolution elastic recoil
- detection analysis (HERDA) · Microwave photoconductivity method
- (u-PCD)

#### ·Secondary ion mass spectrometry (SIMS)

#### **TFT Characterization**

·I<sub>d</sub>-V<sub>q</sub> characteristics

Vd: 10V

 $Vg : -30 \sim 30V$ **Temperature: RT** 

·Light and negative bias stress LED: 400nm wavelength LED

(Intensity: 0.1µW/cm<sup>2</sup>)

Stress Bias : - 20V (Gate)

Temperature: 60°C

# ガス圧依存性 (TFT特性)





| Sputtering pressure | TFT I <sub>d</sub> -V <sub>g</sub>    |              |                     |                 |
|---------------------|---------------------------------------|--------------|---------------------|-----------------|
|                     | μ <sub>FE</sub> (cm <sup>2</sup> /Vs) | SS(V/decade) | V <sub>th</sub> (V) |                 |
| 1 mTorr             | 8.4                                   | 0.24         | -0.75               | 10 <sup>8</sup> |
| 10 mTorr            | 6.8                                   | 0.26         | -0.75               | 10 <sup>8</sup> |

1mTorrで成膜したa-IGZO TFTは、10mTorrに比べてTFT特性(飽和移動度、サブスレショルドスウィング値)や、光バイアスストレスの $V_{th}$ シフトが改善されている。

# ガス圧依存性 (構造特性評価)





#### ラフネスが増加







成膜ガス圧力の減少に伴って、膜密度が増加し、表面ラフネスが減少する。

# ガス圧依存性 (HAXPES 結合状態)



#### Metal元素ピーク

In, Ga, Znは酸化物を形成。試料間の僅かなピーク位置のずれは、 キャリア密度(フェルミレベル)やチャージアップの差異が起因する可能性がある。

#### <u>酸素ピーク</u>

主ピークに大きな差異は認められない。 高エネルギー側にショルダー領域が認められ、 試料間で差異が見られる。 水酸化物等に由来すると推定される。



IGZO膜中(バルク領域)で水素濃度に差異がある?

532

Binding energy (eV)

530

1mTorr

10mTorr

-OH

534

Intensity (arb.units)

Metal Oxide

O<sub>1</sub>s

528

23

# ガス圧依存性 (水素濃度)



| Courte wing processing | as-deposited   | wet annealed   |  |
|------------------------|----------------|----------------|--|
| Sputtering pressure    | H conc. (at.%) | H conc. (at.%) |  |
| 1 mTorr                |                | 1.1            |  |
| 10 mTorr               | 10.8           | 4.4            |  |

ガス圧が大きいほど水素濃度が高い。 HAXPES O1sピークの傾向と合致する。

# ガス圧依存性 (HAXPES 状態密度)

#### HAXPES Valence band



フェルミ直下に準位を確認。ガス圧力が小さいほど準位密度が小さい。





光ストレスにおけるしきい値シフト量と関係がある?

25

# 状態密度 Ga濃度依存(HAXPES)

#### 光ストレス試験の結果



Fig. 6. Id-Vg characteristics before & after photo –GBT tests. (stress conditions: RT, photo (36k lx), Vg = –6 V, 1h) (measurement conditions: RT, dark, Vd = 0.1 V & 1 V) (L/W =  $3/10 \,\mu m$ )

## バレンスバンド(Ga組成比依存性)



- ・Ga濃度に依存して、準位密度が変化
- ⇒光ストレスの傾向と相関性がある?
- ・ガス圧の準位ー光ストレスの傾向と一致

# ガス圧依存性のメカニズム スパッタ粒子の運動エネルギー





#### **Kevin Meyer equation**

$$E_{\rm F} = (E_0 - k_{\rm B}T_{\rm G}) \exp \left[ N \ln(\frac{E_{\rm f}}{E_{\rm i}}) \right] + k_{\rm B}T_{\rm G}$$

 $E_0$ : Energy of the sputtered particles

as it leaves the traget

T<sub>G</sub>: Sputtering gas temperature

 $E_i/E_i$ : Ratio of the energies before

and after a collision

N: Number of collisions

- ・膜質(欠陥)、膜密度、ラフネス スパッタガス圧力に依存したスパッタ粒子の エネルギーが影響する。
- •水素濃度

成膜速度⇒チャンバー中残留水素とスパッタ粒子 の反応時間が影響する。

# HAXPESによるMetal/a-IGZOの 界面状態分析

# Metal/a-IGZOの界面状態分析

a-IGZO TFT(薄膜トランジスタ)において、S\_D(ソース\_ドレイン)電極材料に依存したTFT特性のばらつきが問題となっている。TFTプロセスの熱履歴がS\_D/半導体界面に影響を及ぼす事が知られているが、界面の結合状態などは良く分かっていない。このためスパッタエッチングによる深さ方向分析が可能なXPSにより界面状態を評価した。



# Metal/a-IGZOの界面状態分析(HAXPES)

## Ti/a-IGZO構造



S\_D/半導体界面にIn, Gaメタルが存在する還元層を確認した。 ⇒TFT特性ばらつきの要因と考えられる。

## Mo/a-IGZO構造



Inメタルピークは認められず。 Tiのような還元層は存在しない。

# まとめ

- ・金属元素(In, Ga, Zn)の局所構造をXAFSにより評価。
- Ga-Oが最も結合距離が短く、酸素と安定的に結合して存在
- →酸素欠損を生成しにくい。
- In, Zn周りの酸素欠損が価電子帯近傍の準位形成に関与する可能性がある。
- ⇒材料探索方法の確立、新規材料開発
- ・ガス圧力に依存したバルク領域における状態密度や結合状態をHAXPESにより評価。
- 膜密度、フェルミ準位直下の準位、水素の存在量に差異が認められた。
- フェルミ準位直下の準位は光耐性に関係する可能性がある。
- ⇒プロセス条件の最適化
- ・Metal/a-IGZO界面の状態解析を実施。電極材料によって界面の還元層形成に差異が認められた。
- ⇒電極界面の評価方法、材料選定方法の確立