SPring-8利用推進協議会研究開発委員会 2014年7月4日

グリーンサステイナブルケミストリー研究会(第2回) ーエネルギー関連材料の現状と未来ー

水の可視光分解用光触媒の開発

堂免一成

東京大学大学院工学系研究科 化学システム工学専攻

[1] 太陽エネルギーと人工光合成

[2] 微粒子光触媒による水分解

[3] 光電気化学的水分解 (光触媒シートの開発)

TaON微粒子多層膜
・粒子転写法(PT法)による単粒子膜
・ナノロッド薄膜

[4] 今後の展望

太陽エネルギー量(J/年)

- ・地球表面への供給量 3.0 x 10²⁴
- ・人類のエネルギー消費量 5.5 x 1020
- ·地球上の光合成量 3.0 x 10²¹

地球上の太陽エネルギーの約0.02% を捕らえればよい。

太陽エネルギーを将来の主要な ー次エネルギー源と考えるならば・・・

 ・超大面積に展開可能な技術
 例えば2050年に人類の消費エネルギーの 1/3を太陽エネルギーで賄うと仮定し、
 17の太陽エネルギー変換るラントを 5 km x 5 km = 25 km²と考えると
 約10.000個つくる必要がある。

・輸送・貯蔵可能なエネルギー形態 水素・メタノール・アンモニア等の化学物質

太陽エネルギーの分布

BaTaO₂N Ta₃N₅ Ta₃N₅ LaTaON₂N CaTaO₂N CaTaO₂N Li₂LaTaO₂N CaLaTiON Oxide

Rh-Cr oxide/GaN:ZnO光触媒による水の分解反応

Various (oxy)nitride photocatalysts

How to improve quantum efficiency?

1段階水分解光触媒シート(ハイブリッド型)

粒子転写法:Particle transfer (PT) method

Two-step water splitting system

•Photoanode : O_2 evolution BaTaO₂N $\lambda \le 650$ nm

•Photocathode:H₂ evolution La₅Ti ₂CuO₇S₅ $\lambda \le 670 \text{ nm}$

Reactor for two-step water splitting system

Fabrication process

SEM images of the Ta₃N₅ nanorods

➢ Diameter: ~60 nm, length: ~600 nm
 ➢ Nanorod areal density: ~1.2 × 10¹⁰ cm⁻²
 ➢ Nanorod areal fraction: ~33%
 ➢ Large-scale: 1 × 4 cm

Effect of Ba-doping on PEC results

2段階水分解光触媒シート(ハイブリッド型)

太陽エネルギー変換効率10%は可能か? 面積比:n型(700 nm):p型(850 nm) = 2:1 → φ = 55% n-型: BaNbO₂N p-型: La-Ti-Cu系カルコゲナイド