SPring-8 金属材料評価研究会(第11回) 研究社英語センタービル 地下2階大会議室 2016年2月1日(月)

中 井 善 一 神戸大学大学院工学研究科 機械工学専攻

これまでの研究

マイクロCTイメージング

- ・フレッティング疲労き裂の観察
- ・ねじり疲労き裂の観察
- ・超高サイクル疲労における内部き裂の観察
- ・腐食ピットおよび腐食疲労き裂の観察

ラミノグラフィー

・転動疲労き裂の観察

回折コントラストイメージング

・引張り試験中のミスオリエンテーション変化の観 察

・疲労試験中のミスオリエンテーション変化の観察

腐食疲労損傷の観察

疲労試験装置

疲労試験およびイメージング条件

					CTイメ	ージング	
3	波牙試験		1	X	-ray energ	gy (keV)	20
NaCI (%)		3.0		Specimen-camera distance (mm)		10~	
Loading freq. (Hz)		20				350	
Stress ratio		-1		Rotation step angle (deg.)		0.5	
Stress amp. (MPa)		<u>1</u> 15		Effective pixel		1.4~	
			size(µm/pixel)			3.0	
Number of cycles for CT $N/N_{\rm f}$							
$N = 4.93 \times 10^5 (\text{cyc})$			0 ⁵ (cycle	es)	0.394		
	N= 5	.93 × 10	0 ⁵ (cycle	es)	0.474		
	N= 7.	.93 × 10	0 ⁵ (cycle	es)	0.634		
	N= 8	.93 × 10	0 ⁵ (cycle	es)	0.714		
	<i>N</i> =1.	100 ×10 ⁶ (cycle		es)	0.879		
	N= 1.2	240 × 1	0 ⁶ (cycl	es)	0.991		
$N = 1.251 \times 10^{6}$ (cycl			es)	1			

腐食ピットとき裂

(c)N=1.240×10⁶cycles, $N/N_{\rm f}$ =0.99

(b)N=7.93×10⁵cycles, $N/N_{\rm f}$ =0.63

(d) $N=1.251\times10^{6}$ cycles, $N/N_{f}=1$

介在物と腐食ピット

介在物とき裂

腐食ピットとき裂

き裂が発生した介在物と発生しなかった介在物の相違

Number of cycles N(cycles)

∆*K*の変化

転動疲労き裂の観察

CTイメージングとラミノグラフィー

ラミノグラフィー観察条件

3:右下からシンクロトロン放射光放出

https://commons.wikimedia.org/wiki/File:Undulator.png#/media/File: Undulator.png

材料および試験片

材料:改変SUJ2鋼

試験片の板厚方向に 引き伸ばされた介在物が存在

化学成分 (mass%): 1.00C, 0.35Si, 0.47Mn, 0.006P, 0.017-0.049S, 1.50Cr, and balance Fe.

> 高濃度の硫黄を含む (MnS 介在物)

熱処理条件: 1103 K, 0.5 h➡焼入れ 焼戻し: 453 K, 2h

試験片(寸法:mm)

転動疲労試験機

フレーキング位置での表面観察

(1)垂直き裂発生, N, (2)垂直き裂進展 (3)せん断型き裂発生, N_s(4) フレーキング, N_f

回折コントラストトモグラフィー による疲労損傷の観察

転位→結晶面の湾曲

細束X線回折法

表面の結晶粒のみ測定可. ひずみが10%程度以上になると、連続環になるため、測定困難 照射域中のどの結晶の値であるか判別できない. 試料サイズに制限なし.

電子後方散乱回折法 (EBSD)

表面の結晶粒のみ測定可. 方位解析精度は0.1[°]以下.ただし,自動化されたシステムによる測定の 場合,2[°]未満の方位差の情報は切り捨て. 試料サイズはSEMの資料室の大きさに制限.

X線回折コントラストトモグラフィ法(DCT)

内部の結晶粒の測定可. 結晶粒形状を三次元的に観察可. 方位解析精度は,試料回転ステップ角(0.2°程度). 試料サイズはX線透過厚さ(放射光の場合,鉄鋼では1mm程度)に制限.

回折コントラストトモグラフィー(DCT)の原理

回折スポットの拡がり

ステンレス鋼 焼鈍材

Summation of spot

各回転角におけるスポット形状は,結晶粒の一部 回折スポットは微小回転の間に連続して現れる.

結晶粒形状の再構成のためには、同一結晶粒に含まれるスポットの加算が必要.

試料回転中,一つの結晶粒 から多数の回折スポットが現 れる.

同一結晶粒からの回折スポット を抽出。

同一結晶粒からの回折スポットを再構成することにより,各結晶粒の3次元形状を再構成.

全ミスオリエンテーション: β

回折スポットの出現位置による影響を補正

格子ひずみ

Braggの回折条件より $\Delta \theta = \theta - \theta_0 = \tan \theta_0 \left(\frac{d}{d_0} \right) = \varepsilon \tan \theta_0 \quad \longrightarrow \quad \varepsilon = \frac{\theta - \theta_0}{\tan \theta_0}$ $\tan (2\theta) = \frac{R}{l} \quad \theta: 回折角$

> R: デバイリングの半径=回折スポットと減衰スポット間の距離 I: 結晶から検出器までの距離

βにより疲労損傷評価

試料および測定条件

試料							
供試材	SUS316L						
熱処理	1100°C 30 min						
平均結晶粒径	55 µm						
応力集中係数	1.09						

測定条件	
試料-検出面間距離	10 mm
エネルギ	37 keV
露光時間	1.0 s
ステップ角	0.04 deg.

実験結果

2016/1/8

繰返し数とともに βの平均値が増加

41

実験結果

特定の結晶におけるβの変化

βとSchmid因子の関係

2016/1/8

疲労試験中のβの変化 (純鉄)

45

 $\Box: \beta < 0.12^{\circ}, : 0.16^{\circ} < \beta < 0.4^{\circ}, : \beta > 0.44^{\circ}$

x²: 試料回転軸方向=軸力負荷方向 y²: 観察面に平行な方向 z²: 放射光入射方向

ステンレス鋼と純鉄の比較

2016/1/8

主すべり面でβの変化が大きいものが存在

疲労すべり帯の形状

fcc構造(α黄銅) "planer-slip"

Y. Nakai, T. Kusukawa, and N. Hayashi, Proc. ATEM'99, Vol. 1, pp.152-157, 1999.

bcc構造(構造用鋼)の下限界近傍 におけるせん断型進展破面 (pencil glideの痕跡)

Y. Nakai, K. Tanaka, and T. Nakanishi, Eng. Frac. Mech., Vol. 15, pp.291-302, 1981.

bcc構造(低炭素鋼) "wavy-slip"

