第2回SPring-8材料構造の解析に役立つ計算科学研究会 第5回SPring-8先端利用技術ワークショップ

鉄鋼材料における第一原理計算の 現状と課題

2016年7月22日

新日鐵住金 先端技術研究所 澤田英明

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

船舶、ビル、橋、建設・産業機械、液化天然ガス・石油貯蔵タンク、海底油田採掘 用の海洋構造物、パイプライン、発電プラントなどの社会インフラに用いられる

図5

石油掘削用の 写真 1 海洋構造物

	Eiffel Tower	Eiffel Tower Tokyo Tower TOKYO SKYTF				
	Progress or making Pro from "Iron" to	f Steel Perform ocess Strength, To "steel" Weldal	of Steel hance ughness, bility Observation Deck -450m			
	Observation Deck -276m -116m -58m 125m	E E E E E E E E E E E E E E E E E E E	-350m 70m			
Year	1889	1958	2012			
Material Yield Strength	Wrought iron ~200MPa	Mild Steel (Angles) >235MPa	High strength steel (Pipes) >400, 500, 630MPa			
Weight	7300ton	4200ton	41000ton			
Joining	Rivet	Rivet	Welding			
津山青史、鉄と鋼 100 (2014) 71						

溶接構造とリベット構造

溶接部は、溶接金属を介して母材同士が金属結合し、金属原子同士が くっついた状態となっているため、強固な構造。水密性と気密性、重量 減の点から優れた構造となっている。

溶接のような原子同士の結合ではなく、母材とあて金が機械的に密着し ている状態なので、高圧には耐えきれず、戦後リベット構造は姿を消した。 静かな港に停泊していた戦時標準船の一隻が、突然真二つに破 壊した様子。船体のどこかに加わった力が、最も弱い所に集中し て生じた脆性破壊だった。

チタン酸化物から生まれたフェライト写真3

元の大きなオーステナイト粒

© 2016 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved.

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

薄板

主に自動車に用いられる(2012年の鋼材の内需の20%が自動車向け)

高成形性1.2GPaハイテンが日産自動車(株)殿の2013年度販売の新車に世界で初めて採用された。 プレス成形性の指標である伸び特性が従来の同強度材の2倍程度であり、2ランク低い強度レベルの 780MPa級と同等。(http://www.nssmc.com/news/old_nsc/detail/index.html/?rec_id=4128)

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

 $\ensuremath{\mathbb C}$ 2016 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved.

鋼の強化

強化手段	強化機構	強化因子
固溶強化	<mark>転位と溶質原子</mark> の間の相互作用により、 転位の運動に対する抵抗力が増加する	固溶元素の種類、濃度
析出強化	<mark>転位</mark> が動くときに、 <mark>析出物</mark> から抵抗力を 受ける	析出物の種類、サイズ、 密度
転位強化	<mark>転位が<mark>転位</mark>を切って進む際に、点欠陥等 の形成に伴う抵抗が生じる</mark>	転位密度
細粒化	<mark>粒界が転位</mark> の移動の妨げになる	粒径

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

第一原理計算について 析出物の安定性 溶質原子間の相互作用

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

密度汎関数理論

● 多電子系の基底状態は電子密度によって一義的に決められる
 ● 正しい電子密度は系の基底状態を与える

系のエネルギーを電子密度に対して最小化する ことによって、基底状態の電子密度とエネルギー が得られる

● P. HohenbergとW. Kohnが1964年に提唱

 ●W. KohnがGaussianを開発したJ. Popleととも にノーベル化学賞を1998年に受賞

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

鉄の相安定性の第一原理計算

T. Asada and K. Terakura, Phys. Rev. B 46, 13599 (1992)

D. E. Jiang and E. A. Carter, Phys. Rev. B 67, 214103 (2003)

Thermodynamic properties of magnetic transition metals

F. Kormann, A. Dick, T. Hickel, and J. Neugebauer, Phys. Rev. B 83, 165114 (2011)

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

磁気構造変化に伴う格子緩和は無視

F. Kormann et al., Phys. Rev. B 85, 125104 (2012)

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

第一原理計算について <u>析出物の安定性</u> 溶質原子間の相互作用

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

鋼中での析出物の役割

役割	効果		
粒成長時のピニング⇒細粒化	強度、靭性		
α、γの核形成サイト⇒細粒化	強度、靭性		
固溶元素濃度の制御	γ 相から α 相への変態		
	析出物の核形成と成長		
	深絞り性		
	Bake hardening特性		
析出強化	強度		
耐摩耗性	耐久性		
耐水素脆化	水素脆化抑制		

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

整合析出物と部分整合析出物

- ●鋼中の析出物には、成長によって整 合状態から部分整合状態に遷移す ると考えられているものがある
- ●整合状態と部分整合状態では、析 出物がもたらす諸々の物性が異なる 可能性がある
- 整合状態から部分整合状態に遷移 する大きさを知った上で制御すること で、鋼の特性を飛躍的に向上させら れる可能性がある

整合状態から部分整合状態に遷移す る大きさを知ることは重要

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

完全整合 析出物

部分的整合

析出物

田相

転位

1463 atoms for NbC4319 atoms for TiC

- 東大尾崎先生開発のオーダーN法プログ ラムOpenMX使用
- 計算精度を確認しながら、金属系に適用

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

鉄/析出物界面の結合

析 出物の DOS

 鉄と炭化物の界面の結合は、鉄原子と 遷移金属原子の金属結合に依存
 鉄原子と遷移金属原子の結合によって、反結合的性質が弱められる
 遷移金属原子の軌道占有率が高いほど、界面の結合は強くなる

D.H.R. Fors et al., Phys. Rev. B 82, 195410 (2010)

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

部分整合界面の構造(Fe/NbC)

H. Sawada et al., Modelling Simul. Mater. Sci. Eng. 21 (2013) 045012

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

Fe母相中の歪の見積り

古典分子動力学法: Fe原子間ポテンシャル=Finnis-Sinclair

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

冷間圧造用線材における センタイト球状化

冷間圧造用線材 (Cold Header材)

●二次加エメーカーがボルトやナットなどの最終製品に加エ

●二次加工メーカーが、加工性向上を目的に、セメンタイトの球状化による高延性化

数時間を要する球状化処理では、より効率的なプロセスが必要

製品時の高強度化も要求され、焼入れ性向上のため、Mn,Cr等の添加元素を使用

添加元素は、球状化速度に影響を与える

Phase Field

シミュレーション

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ © 2016 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved.

t=130sにおける(a) Fe-0.44wt%C (b) Fe-0.44wt%C-0.30wt%Mn (c) Fe-0.44wt%C-0.28wt%Cr (d) Fe-0.44wt%C-0.32wt%NiのPhase Field変数分布

Mn、Cr ⇒ 球状化が遅延

神武他、材料とプロセス 25 (2012) 315

Ni ⇒ 若干球状化が促進

セメンタイトを安定化する元素では、球状化を抑制する傾向
 ■ Crの方が、Mnよりも効果が大きいことも実験の報告と一致。
 不安定化する元素では、球状化を促進、もしくは変化しない傾向
 ■ 実験結果がなく、一致するか不明

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

Partitioning enthalpies of alloying elements between cementite and ferrite

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

 $\Delta G = \Omega c_M (Fe_3C) \Delta H_M (Fe_3C) - (1-\Omega) c_M (Fe) \Delta H_M (Fe) - \Omega TS_M (Fe_3C) + (1-\Omega) TS_M (Fe)$ (M=Si, Cr)

$$\begin{split} &S_{M}(Fe) = -k_{B} \{c_{M}(Fe) | nc_{M}(Fe) + (1 - c_{M}(Fe)) | n(1 - c_{M}(Fe)) \} \\ &S_{M}(Fe_{3}C) = -k_{B} \{c_{M}(Fe_{3}C) | nc_{M}(Fe_{3}C) + (1 - c_{M}(Fe_{3}C)) | n(1 - c_{M}(Fe_{3}C)) \} \end{split}$$

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

 $\ensuremath{\mathbb C}$ 2016 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved.

Magnetic free energy

 $\begin{array}{ll} C_m = k_f(T/Tc) exp[-4(1-T/T_c)] & T < T_c \\ C_m = k_p(T/Tc) exp(8p(1-T/T_c)] & T > T_c \end{array}$

$$\begin{array}{ll} k_{f}=4(1-f_{s})S_{mag}/(1-exp(-4))\\ k_{p}=8pf_{s}S_{mag}\\ f_{s}: \mbox{ fraction of magnetic entropy above curie temperature}\\ S_{mag}: \mbox{ Rln}(1+S_{\alpha}) : \mbox{ magnetic entropy}\\ S_{\alpha}: \mbox{ magnetic moment of iron} & Magnetic free energy for pure bcc Fe} \end{array}$$

Phase	α-Fe	θ-Fe ₃ C	
$E_{cal}(eV/f.u.)$	-8.310	-33.960	
ZPE (meV/atom)	41.9	53.3	$\gtrsim -20$ $\land < 5 \text{ meV}$
$S_a (\mu_B/\text{Fe})$	2.21	1.86	
$S_{\rm mag} \ (R/{\rm Fe})$	1.166	1.051	T
$T_c(\mathbf{\check{K}})^{ref}$	1041	483[8,21]	ີ່ ບ -40-
p^{20}	1	2	
f_{s}^{20}	0.105	0.105	$\square \qquad \qquad$
$k_f [J/(mol K)/Fe]$	35.36	33.72	effective Model OMC
$k_p \left[J/(\text{mol K})/\text{Fe} \right]$	8.15	15.53	$= \frac{1}{2} = $
F = 0.0			$\frac{30}{3}$ -80 - $\frac{1100}{3}$ difference
:開:基盤メタラジー研究音	『澤田作成 2016年7』	月22日: SPring-8先端利	術ワ -1000 200 400 600 800 1000 1200 1400 1600 1
			Tomporature (V)

H. Sawada et al., Acta Mater 102 (2016) 241

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

第一原理計算について 析出物の安定性 **※質原子間の相互作用**

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

焼付硬化型鋼板

適用対象:自動車の車体パネル

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

研究の背景

- 自動車外板用のBH鋼板には、耐常温時効性 (素材を常温で長期間保管した後も降伏点伸 び(YPE)が出ない性質)が求められている。
- いずれも固溶C/Nの拡散による転位固着が関 与する現象であり、高BHと耐常温時効性の両 立は難しい。
- 鉄中において、固溶Nは一部の置換型合金元 素と引力相互作用をすると考えられている。
- 固溶Nと置換型溶質原子の相互作用(拡散ト ラップ効果)を活かすことで、BHと耐常温時効 性のバランス改善が可能か検討する。

S-I(N)相互作用の文献値

Cr-N	-0.18eV		
V-N	−0.21eV		
Mo-N	-0.13eV		
Mn-N	−0.09eV		

Numakura et al.: ISIJ Inter. 36(1996)290 : CAMP-ISIJ 15(2002)1272

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

N. Maruyama et al., ISIJ Int. 55 (2015) 2648

- Mn.Cr ⇒ BHが大きく低下せずに、促進時効後のYPE発生抑制、 Crの方が良好なBH-遅時効バランス
- Mo ⇒ BH- 遅時効バランスに大きな影響なし
- V. Nb. Al ⇒促進時効後のYPE発生は抑制されるが、BHも低下

Cr-N	−0.18eV		
V-N	−0.21eV		
Mo-N	−0.13eV		
Mn-N	-0.09eV		

相互作用E:V>Cr>Mo>Mn BH: Nb<Al<V<Cr~Mo~Mn YPE:Nb~AI<V<Cr<Mn<Mo

固溶Nの拡散距離と 耐常温時効性、焼付硬化性

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

 $\ensuremath{\mathbb C}$ 2016 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved.

置換型元素(Cr)と侵入型元素(N)の相互作用

N. Maruyama et al., ISIJ Int. 55 (2015) 2648

M. Sluiter, Proceedings of the 3rd International Symposium on Steel Science (2012) 29

- J.-D. Kamminga et al., J. Computer-Aided Materials Design, 10 (2003) 1
- M. Souissi et al., 日本鉄鋼協会、材料の組織と特性部会シンポジウム、2015.9.18
- X. Guan et al., Mater. Sci. Eng. A 73 (2004) 370

H. Numakura, Proceedings of the 3rd International Symposium on Steel Science (2012) 19

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

鋼中空孔とIS相互作用

- ・平衡空孔濃度(800°C) ≈ 10⁻⁹ (S. Takagi et al., Radiat. Effect., 79 (1969) 87, H. Schultz, Mater. Sci. Eng. A 141 (1991) 149) ⇒ Cr添加量(~10⁻²)に対して極僅かであり、寄与は極僅か
- 1%スキンパス、2%予歪による空孔濃度 < 10⁻⁵(電気抵抗: J. Takamura et al., Trans. Iron. Steel Inst. Jpn., 9 (1969) 216、陽電子消滅から推測)
 - ⇒ Cr-Vac-Nの複合体
 A、C: 常温時効抑制には、不充分(0.25eVでは、10⁻⁴以上の複合体が必要)
 B: Cr-Vac-N (0.9eV)は可だが、Vac-N結合が主で、Crの必要性に疑問
- Cr-Vac結合による、空孔消滅抑制はあり得る
 しかし、Cr-Vac < Mn-Vacであり、耐常温時効性がCr>Mnであることを説明不可

	Mn	Cr	Mo	V	-
This work (First-principles calculation)		-0.05	-	-	_
First-principles calculation ³⁶⁾	-0.16	-0.05	-0.33	-0.04	T. Ohnuma et al., Acta Mater., 57 (2009) 5947
Experiment ⁴⁶⁾	-0.15	<-0.11	-	<-0.11	M. Doyama, Bull. Jpn. Inst. Met., 25 (1986) 808

- CrとNは低温(25°C、100°C)時効で凝集する(3DAP: J.Takahashi et al., Mater. Sci. Eng. A 585 (2013) 100)
 ⇒ VacとNの拡散による、Cr-Vac-N凝集体生成と推測可

冷間圧延による空孔形成

空孔クラスタ密度増

空孔5個以上のクラスタが冷間圧延時に形 成される 初期、クラスタサイズ増(<圧延率5%) その後、クラスタサイズ減(>圧延率5%)

> H. Mohamed et al., Nucl. Instr. Meth. Phys. Res. B 258 (2007) 429

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

M. Sluiter, Proceedings of the 3rd International Symposium on Steel Science (2012) 29

構造に依存しない原子サイズ効果が、鋼中の置換型原子と侵入型原子の 相互作用を決めている

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

今後の計算材料科学に対する期待

●より複雑な現象への適用 ●マルチスケール化 ●情報科学の活用 ●ものづくり、観察との強い連携

公開: 基盤メタラジー研究部澤田作成 2016年7月22日: SPring-8先端利用技術ワークショップ

