SPring-8金属材料評価研究会(第13回)/ 第21回SPring-8先端利用技術ワークショップ

平成30年1月22日

-放射光x線ラミノグラフィー法を 用いた引張試験におけるボイド 発生-成長の4D観察-

九州大学 工学研究院 古君 修

Contents

- 1. 延性破壊と脆性破壊
- 2. 延性破壊機構
- 3. ボイド発生-成長の4D観察 工業用純鉄とIF鋼の局部伸び支配因子

破壊の分類

延性 (Ductile) 粒内 (Intragranular) × 脆性 (Brittle) 粒界 (Grain boundary)

- ・粒界破壊だからと言って、脆性破壊ではない。
- ・延性破壊と脆性破壊の組織学的支配因子は異なる。

研究分野	延性	脆性
破壊力学 Fracture mechanics)	非線形 (Stress and pre-crack are n pre-crack:先	線形 ecessary to fracture) 在欠陥
転位論 Dislocation theory)	大規模降伏	小規模降伏
破面解析学 (Fractography)	ディンプル (垂直/せん断)	リバーパターン
結晶学 (Crystallography)	せん断面 (原子面の結合	へき開面 カ)
ボイド (Void nucleation & growth)	(引張) 局部変形域 で発生・成長	N/A 今回着目

延性と延性破壊研究の重要性

延性破壊は脆性破壊と異なり瞬時の破壊ではないため、 安全な破壊形態と言われ非線形破壊力学の 工業的重要性は高くなかったが。

厚板:・近年注目を浴びているシェールガス、メタンハイド レート等の非在来型天然ガスの生産の増加 ・CO₂ガス海底貯槽の必要性 ⇒拡散しにくいガスの輸送用パイプで不安定延性破壊を回避

> 不安定延性破壊:き裂伝播速度とパイプ内の減圧波速 度が平衡状態になり、一定の内圧を保ち続けながらき 裂が伝播し続ける破壊形態。

薄板: ・高強度鋼板の成形性改善 ⇒ 伸び(延性:塑性変形能)の向上

・いずれも、ここ20年、注目されている学問分野・。

<u>高強度TRIP - assisted</u> 鋼におけるアの影響 TRIP¹⁾-assisted鋼²⁾:アのα'への加工誘起変態を 活用した高強度 - 高延性鋼

- 1) V. F. Zackay, E. R. Parker, D. Fahr and R. Busch: Trans. ASM, 60 (1967) 252.
- 2) T. Nakamura and K. Wasaka: Tetsu-to-Hagané, 61 (1975) 2067.
- 3) M. Yamamoto, R. Ochi, K. Yasuda, M. Aramaki, S. Munetoh and O. Furukimi: NETSU SHORI, 56(2016), 285.

Contents

- 1. 延性破壊と脆性破壊
- 2. 延性破壊機構
- 3. ボイド発生-成長の4D観察 工業用純鉄とIF鋼の局部伸び支配因子

応カーひずみ曲線の局部伸び域での材料内部の変化

•9

局部伸びの支配因子をまとめると

応力三軸度:試験片形状(板厚・・)、 マクロ的応力-ひずみ曲線

局部伸び

ボイドの発生起点: 粒子(介在物、析出物)、→ ボイドの成長-連結: ボイド間の組織の 強度、伸び特性 (ミクロ的応力-ひずみ曲線)

ボイドの発生起点

- 1) 粒界
 - 単相鋼:大角粒界、亜粒界 二相鋼:二相界面(フェライト-マルテンサイト、 フェライト-オーステナイト・・) ※二相鋼の場合、ボイドはマクロ的応力-ひずみ曲線の

最高荷重より前で発生

- 2) 粒子 (介在物、析出物)
- 3) すべり帯(Slip band)
- 4) 転位
- 5) 原子空孔

実際の材料で、単一の発生起点のケースは少ない。 •

J.R.Rice, D.M.Tracey : J. Mech. Phys. Solids, 17(1969), 201-217.

Rice & Tracy model (球形ボイドの成長モデル)

- σ_m : 平均応力 $(\sigma_1 + \sigma_2 + \sigma_3)/3$
- $\overline{\sigma}$: Mises応力

ϵ_{eq} :相当塑性ひずみ

McClintock, F. A. : "A Criterion for Ductile Fracture by the Growth of Holes" J. Appl. Mech., 35(1968), 353–371.

P. F. Thomason : "A Theory of Ductile Fracture by Internal Necking of Cavities" J. Institute. Metals, 96(1968), 360–365.

Cox T. B., Low J. R. Jr. : "An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 Grade Maraging Steels" Metall.Trans. A, 5(1974), 1457-1470.

いずれも引張変形の前からボイドが存在すると仮定してモデル構築 ⇒実際には最大荷重近傍からボイドの発生開始:このプロセスの解析は困難 ⇒精緻なボイド成長過程の4D観察が必要

Contents

- 1. 延性破壊と脆性破壊
- 2. 延性破壊機構
- ボイド発生-成長の4D観察
 工業用純鉄とIF鋼の局部伸び支配因子
 JASRI承認課題採択番号2016A1183

IF 鋼とは?

IF 鋼: Interstitial free steel

Ti, Nb などの炭化物、窒化物形成元素を添加し、 格子間原子を低減させ、深絞り性を向上させた鋼板。 主に、自動車用外板に使用されている。

Difference in void nucleation site and local elongation between industrial pure iron & IF steel

O. Furukimi, Y. Takeda, M. Yamamoto, M. Aramaki, S. Munetoh, H. Ide, M. Nakasaki, Voids nucleation and growth examination during tensile deformation for IF steel by synchrotron X-ray laminography and EBSD, Tetsu-to-Hagané, 103 (2017) DOI: 10.2355/tetsutohagane.TETSU-2017-011.

Chemical composition of IF steel and industrial pure iron tested

(mass%)

Specimen	С	Si	Mn	Р	S	Ti	Al	Ν
A (IF steel)	0.002	0.002	0.14	0.01	0.004	0.046	0.048	0.0020
B (Industrial pure iron)	0.003	0.001	0.16	0.01	0.004		0.001	0.0017

IF steel : Hot rolling – Annealing (973K x 150s) t = 4.2mm Industrial pure iron : Hot rolling – Annealing (1138K x 75s) t = 4.0mm

Strength and elongation of IF steel and industrial pure iron

Specimen	0.2% Proof Strength (MPa)	Tensile Strength (MPa)	Uniform Elongation (%)	Local Elongation (%)
A (IF steel)	188	275	33	46
B (Industrial pure iron)	216	281	28	v 39
	RD	t = 1.2mm		
	R1.0 R1.0 3.0 0.0 5.0 10	(mm)	Initial str	rain rate : 1 x 10 ⁻³ /s

EBSD images of base metal

Hot-rolled and annealed IF steel Industrial pure iron

Hall-Petc Effect : 22MPa (10% of 0.2%PS)

101

111

 $d = 20 \mu m$

Stress-strain curves

Industrial pure iron

Arrows :stopping points to observe voids by Synchrotron X-ray.

SE and EBSD images after tensile test for IF steel ($\varepsilon_p = 1.2$)

Void nucleation site : Ti(C,N) in grain boundary

Tensile direction

SE and EBSD image after tensile test for IF steel ($\varepsilon_p = 1.1$)

Void nucleation site : in grain boundary •21

EBSD images after tensile test ($\varepsilon_p = 0.25$) for industrial pure iron

Void nucleation sites : grain boundary and inter granular (sub grain boundary)

Void nucleation site

	Grain boundary	Precipitates in grain boundary	Precipitates in intra granular
IF steel	50%	20%	30%
Industrial pure iron	100% (Sub G.B. 30%)		

Experiment by using Laminography

M. Hoshino, K. Uesugi, A. Takeuchi, Y. Suzuki, N. Yagi, Three-dimensional structural analysis of laterally extended objects using X-ray laminography, J. Jpn. Soc. Synchrotron Radiat. Res. 26 (2013) 257–267

Merit : Decrease in X-ray penetration distance

 \Rightarrow Increase in X-ray strength

•24

Demerit : Detection limit is $1 \sim 2 \mu m$

Applicable to voids analysis of tensile test specimen ($t \ge 1.0$ mm)

Observation conditions

- **ビームライン:BL20XU**(37.7keV) 試料の回転軸傾き角:45°
- 可視光変換型高解像度X線イメージングユニット (浜松ホトニクス BN-AA50, SCMOS:ORCA FLASH4.0)
- 露光時間:600ms 投影数:3600枚/360°

 $\varepsilon_{\rm p}$: Reduction of area (Plastic strain)

•26

3D images of voids for industrial pure iron obtained by laminography method

 $\varepsilon_{p} = 0.20$

 $\varepsilon_n = 0.18$

 $\varepsilon_p = 0.63$

Effects of plastic strain on number of void and volume fraction of void for industrial pure iron and IF steel

Voids number & volume fraction: Industrial pure iron > IF steel

Relationships between average H_{IT} and distance from grain boundary for industrial pure iron and IF steel

[結論]

ラミノグラフィー法でIF鋼と工業用純鉄のボイドの 発生−成長−連結を観察

- ・工業用純鉄では ε_{0} が1.4で急激な成長-連結
- ・この高ε_。域でもIF鋼ではボイドの急激な成長−連結なし

IF鋼で高い局部伸びを示す主な要因 ボイドの急激な成長-連結の抑制

粒界近傍での硬さ不均一性が工業用純鉄で大 →塑性ひずみの傾斜