硬X線光電子分光法(HAXPES)の特徴と SPring-8 BL46XUのHAXPESの紹介

公益財団法人 高輝度光科学研究センター(JASRI) 安野 聡

JASRI 2018. 1. 22

Outline

■硬X線光電子分光法(HAXPES)の特徴
■SPring-8 BL46XUのHAXPES装置
■応用事例の紹介
■HAXPESデータベースに関する取り組み
■課題募集について(産業利用BL)

2

硬X線光電子分光法(HAXPES)の特徴

JASRI 2018. 1. 22

3

光電子分光法で得られる情報

Appl. Surf. Sci. 100/101 (1996) 36

JASRI

HAXPESの特徴

HAXPESのメリット(1):検出深度が深い

検出深度大(ラボの数倍)

- Bulk sensitive (surface insensitive)
- Low surface/contaminant effects (surface preparation is less important)
- Analysis of buried interfaces
- Depth profiling by TOA dep.

JASRI

HAXPESの特徴 HAXPESのメリット(1):検出深度が深い

第13回 SPring-8金属材料評価研究会

JASRI

HAXPESの特徴

HAXPESのメリット(2): 測定可能なピークが多い

ラボXPS

- 1.5 keV以下ではピークが密集
 →他のピークと重畳しやすい
- s軌道以外はピーク分裂で解析困難

HAXPES

JASRI

- 共存元素の内殻やオージェ、プラズ モンロス等のピークの重畳を回避し やすい
- ピーク分裂がなく解析が容易な深い 1s準位が使える(Al 1s: 1.65 keV, Si 1s: 1.84 keV)

Element		1s	2s	2p1/2	2p3/2	3s	3p1/2
1	н	14					
2	He	25					\sim 1.5 keV
3	Li	55					1.5∼.8 keV
4	Be	112					9a.14 koV
5	В	188					0~14 KeV
6	С	284					
7	Ν	410	37				
8	0	543	42				
9	F	697					
10	Ne	870	49	22	22		
11	Na	1071	64	31	31		
12	Mg	1303	89	50	50		
13	AI	1560	118	73	73		
14	Si	1839	150	100	99		
15	Р	2146	189	136	135		
16	S	2472	231	164	163		
17	CI	2822	270	202	200		
18	Ar	3206	326	251	248	2	29 16
19	K	3608	379	297	295	3	35 18
20	Ca	4039	438	350	346	4	4 25
21	Sc	4492	498	404	399	5	51 28
22	Ti	4966	561	460	454	5	59 33
23	V	5465	627	520	512	6	6 37
24	Cr	5989	696	584	574	1	4 42
25	Mn	6539	769	650	639	5	32 47
26	Fe	7112	845	720	707	40	91 53
21		7709	925	793	110	14	1 69
20 20		8070	1009	070	000	11	00 77
29	Cu Zn	0979	11097	902	933	12	
30	211 Ga	10367	1200	1045	1022	14	SO 104
32	Ga	11102	1/15	12/12	1217	10	104
32	Δe	11867	1413	1240	1324	20	120
34	M3 50	12659	1652	1/17/	1/24	20	140
35	Br	13474	1782	1506	1550	20	7 180
36	Kr	14326	1921	1731	1678	29)3 222

HAXPESの特徴

HAXPESのメリット(2): 測定可能なピークが多い

K. Kobayashi, Nucl. Instrum. Methods Phys. Res. A 547 (2005) 98

Spin-orbit splitting によるピークの分裂がない準位を選択することで, 解析が比較的容易になる場合がある。

第13回 SPring-8金属材料評価研究会

年代別被引用数

毎年の出版項目数

HAXPESに関連した論文出版数、引用数は年々増加している。 分析手法としてHAXPESの認知度は高まってきている。

Web of science(https://apps.webofknowledge.com/) 検索keyword HAXPES or hard x-ray photoelectron など

JASRI

2018. 1. 22

第13回 SPring-8金属材料評価研究会

HAXPES Beamlines in the world

SPring-8

- •BL09XU (Res. & Util. Div., JASRI)
- •BL12XU (NSRRC, Taiwan)
- •BL15XU (NIMS)
- •BL16XU (SUNBEAM)
- •BL19LXU, BL29XU (RIKEN)
- •BL24XU (Hyogo prefecture)
- •BL28XU (Kyoto Univ.)
- •BL36XU (Univ. Electro-Commun.)
- •BL46XU (Industrial Div., JASRI)
- •BL47XU (Res. & Util. Div., JASRI)

(http://www.mext.go.jp)

2018. 1. 22

NSLS-II

- •X24A (NIST)
- ALS
- •9.3.1 (Tender X-Ray Spectroscopy)
- •Sector 5-IDC

ESRF

- •ID16
- •ID32
- BM25 SpLine
- BESSY
- •KMC-1
- DESY
- •BW2
- Soleil
- Galaxies
 Diamond
- •I09
- 各国の放射光施設でHAXPESが稼働 している。

日本(SPring-8)は特に研究が盛ん。

HAXPES Beamlines at SPring-8

第13回 SPring-8金属材料評価研究会

SPring-8 BL46XUのHAXPES装置

Beamline structure of BL46XU

JASRI

X-ray Optics for HAXPES

HAXPES in BL46XU of SPring-8

R4000 vs. HV-CSA 300/15

	VG Scienta R4000	Focus HV-CSA 300/15		
type	Hemispherical	Cylindrical sector		
KE	\leq 10 keV (normally operated at 8 keV)	≤ 15 keV		
energy resolution	high • Exp. data fitting Si(111)DCM +Si (444) CC hv~ 7939.1 eV delta E 0.235 eV Ep=200 eV, RT 7938 7939 Kinetic energy /eV	medium Si(333)DCM Slit size: 0.5, Ep=100 eV, RT hv~14016.44 eV delta E 0.501 eV 14015.0 14016.0 14017.0 14018.0 Kinetic energy/eV		
efficiency	high	medium		
stability	Very stable at normal condition (8 keV)	Stable but sometimes discharges at ≥12 keV		
others	Auto-meas. system with GUI. Peripheral devices	Blanking electrode for time- resolved exp.		

R4000 HAXPES system

第13回 SPring-8金属材料評価研究会

JASRI

Preparation Chamber機構

前処理(成膜、高温熱処理)⇒HAXPES測定が大気非暴露で対応可能

JASRI

Metal/SiC界面反応層の分析 BL46XU Exp. 1st hatch(2D-XRD)とHAXPESの組み合わせ

Metal/SiC界面反応層の分析

第13回 SPring-8金属材料評価研究会

金属材料へのHAXPES応用事例

hv 2, 4 keV

2018. 1. 22

hv 6 keV

金属材料へのHAXPES応用事例

Fig. 9. HAXPES spectra of Cr 2p_{3/2} electron binding energy for Alloy 33 samples exposed to steam at (a) 800 °C and (b) 1000 °C versus normalized intensity..

M.S. Elbakhshwan et al, Appl. Surf. Sci., 426 (2017) 562

FeCrNi合金の分析

HAXPESデータベースに関する取り組み

JASRI 2018. 1. 22

実用的な分析手法に向けて

イメージしやすいのはラボのXPS

SPride: Industrial Application Division User Support Geoup 産業利用推進業 (食業利用実現のルーク) HOME 活動 産素利用たとなう行う イベント情報 利用成果没料等

BL46XU 振要 多轴回折 光電子分光

JASRI

2018. 1. 22

BL46XU HAXPES 標準試料データベース

▶ 利用にあたって

「BL46XU HAXPES 標準試料データベース」はBL46XJのHAXPES装置(VG-SCIENTA R4000アナ ライザーンにより測定した HAXPES スペケルをPdfファイルにてご覧頂けるデータベースです。 HAXPES実験の筆前検討(測定条件、サンプル構造)やデータ解釈などにお役立てください。 現在は金属を中心としたデータのみとなっておりますが、他の金属元素、材料についても測定を 行って順次公開していく予定です。

[測定条件]

- Analyzer : VG-SCIENT A R4000-10keV
- X-ray energy : 7.94 keV (Undulator BL with Si(111) double crystal and Si (444) channel out monochromator)
- Slit size : 0.5mm × 25mm curved
- * Pass energy : 200 eV (Constant Analayzer Energy)
- Angle between X-ray axis and analyzer axis : 90°
- Angle of X-ray incidence : 10° (Relative to sample surface)
- $\, {}^{\star}\, {\rm Take}$ off angle : 80 $^{\circ}\,$ (Relative to sample surface)
- Temperature : RT

[収録内容]

・Surveyスペクトル ・内殻準位スペクトル

・価電子帯スペクトル

※当データペースは無償提供させて頂いておりますが、下記「ウェブサイト上のコンテンツに開す る著作権の殉爆したる注意事項」の内容をよくご課解の上ご使用ください。 ※当データペースの使用により使用者が被ったいかなる損害、トラブルに関して、益財団法人 高 頑度光科学研究センターでは一切の支任を良いかれますので予めご了承ください。

▶ 更新履歴

- Last Update 2016/03/07
- ・2016/03/07 HAXPESデータベースに9種の登録準備
- 2016/03/03 HAXPESデータベースにAIを登録
- ・2016/03/03 HAXPESデータベースページの作成作業を開始

▶ BL46XU HAXPES 標準試料 データペース

Al Metal (Z=13)

第13回 SPring-8金属材料評価研究会

相対感度係数

硬X線領域における相対感度係数が整備されていないため、 組成の半定量分析が実施できていない. (但し、イオン化断面積等の計算値はいろいろある)

定量分析を行うためには

様々なエネルギーが使用できるSR光の特徴を活かしたいが、 全てのエネルギーについて実測値を求めるのは困難。 幾つかの代表的なエネルギーについて、実測値と計算値を比較し、 計算値を元にした定量方法が現実的か?

JASRI

相対感度係数

J. J. YEH and I. Lindau, Atomic data and nuclear data tables 32 (1985) 1

2018. 1. 22

Differential photoionization cross section for linearly polarized photons

$$d\sigma / d\Omega = \frac{\sigma}{4\pi} \left[\left(1 + \frac{\beta}{2} \left(3\cos^2 \theta - 1 \right) + \left(\delta + \gamma \cos^2 \theta \right) \sin \theta \cos \varphi \right) \right],$$

Number of photoelectrons detected per second

I:	Peak Intensity(/solid angle)
<i>n</i> :	Atomic density(atoms/cm ³)
F:	Flux of X-ray(/m ² sec)
D:	Detector efficiency
A:	Analysed area
$\Delta \Omega$:	Solid acceptance angle of the analyser
$d\sigma/d\Omega$:	Differential photoionization cross section
λ:	Inelastic mean free pass(m)
	,

相対感度係数

2p_{3/2}

1s

・計算値のλの見積りがずれている?

あいちSR HAXPESと共同でデータベース開発を推進中(光ビームプラットフォーム事業)

課題募集について(産業利用BL)

JASRI 2018. 1. 22

BL46XU HAXPES

安野 聪: yasuno@spring8.or.jp

産業利用推進室コーディネーター

小溝 裕一: komizo@spring8.or.jp

産業利用推進室ホームページ

http://support.spring8.or.jp/index.html

第13回 SPring-8金属材料評価研究会