

6

Conversion reaction of methane to hydrocarbons. 25	
Methane	
H H H H H H H H H H H H H H	Mo/HZSM-5 Weng et al. Cetal. Lett. 21, 35 (1999) Pt-50_Z/ZrO; Areta et al. J. Cetal. 179, 26 (1999) Single-sitte Fe/SiO; Bas et al. Science 344, 616 (2014) Mr/SiO; Yamanaka et al. ChemistrySelect, 16, 4572 (2017) Pt-Sn/HZSM-5 Dumesic et al. ACS Cetal. 7, 2068 (2017) Pt-Bi/ZSM-5 Verme et al. ACS Cetal. 8, 2735 (2018) Single-atom Pt/CeO; Weng et al. ACS Cetal. 8, 4044 (2018) Mr/SiO_1 is a prominent catalyst for non-oxidative coupling of CH4 (2). Nishikawa, Y; Ogihara, H; Yamanaka, I, Liquid-Metal Indium Catalysis for Direct Dehydrogenative Conversion of Methane to Higher Hydrocarbons. ChemistrySelect 2017, 2 (16), 4572–4576.
$\begin{array}{ccc} 0 & 1 & 2 & 3 \\ Hydrocarbon yield \\ / mmol g_{cat}^{-1} \longrightarrow \end{array}$	

Acknowledgement	52
Prof. Y.Iwasawa(ECU)	Prof. M.Kimura(PF)
Prof. S.Ted Oyama(Univ.	Dr. H.Abe(PF)
Tokyo)	Dr. Y.Niwa(PF)
Dr. K.K.Bando(AIST)	Dr. H.Nitani(PF)
Dr. T.Kawai	Dr. Murata(Fuji)
Dr. Y.Uemura(PSI)	Dr. Suzuki(Fuji)
Prof. S.Adachi(PF)	Dr. U.Kashabonia(HU)
Dr. M. Yabashi(SACLA)	Prof. S.Iguchi(TIT)
Dr. T.Katayama(SACLA)	Prof. I.Yamanaka(TIT)
Dr. S.Nozawa(PF)	Financial Support from
	NEDO and JST

