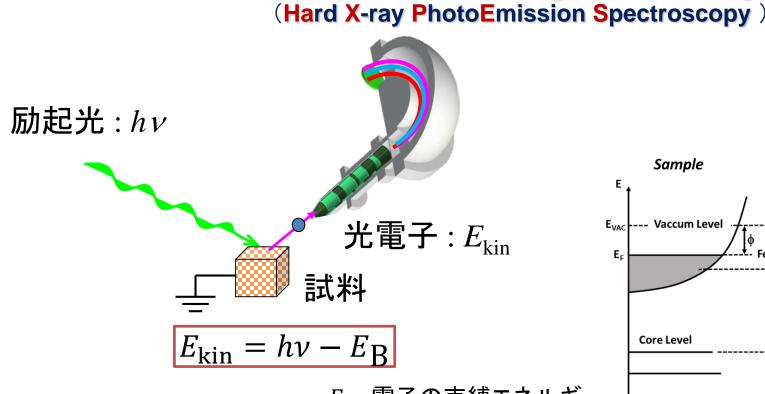
硬X線光電子分光法(HAXPES)の特徴と触 媒材料への応用事例の紹介

公益財団法人 高輝度光科学研究センター(JASRI) 安野 聡



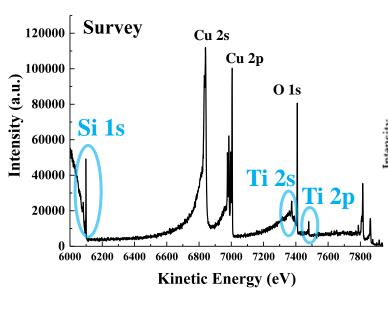
Outline

- ■硬X線光電子分光法(HAXPES)の特徴
- ■SPring-8 BL46XUのHAXPES装置
- ■触媒材料の応用事例の紹介
- ■HAXPESのチャージアップ対策
- ■SPring-8 産業利用BLの課題募集について

硬X線光電子分光法(HAXPES)の特徴

硬X線光電子分光(HAXPES)とは?

E $h\nu$ Sample N(E) Vaccum Level 🕂 . Fermi Level $h\nu$ **Core Level**


Spectrum

 $E_{\rm R}$: 電子の束縛エネルギー

従来の光電子分光(photoemission spectroscopy: PES): 紫外光~軟X線(数eV~1.5 keV)

(硬X線)光電子分光法で得られる情報

定性分析

状態分析

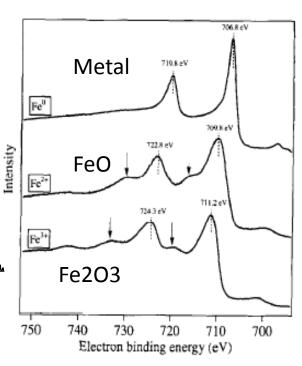
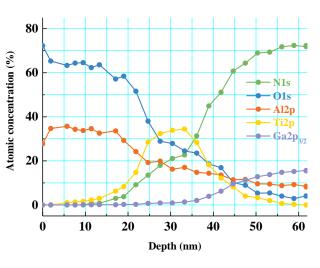



Fig. 1. Fe 2p spectra obtained from the reference samples. Arrows indicate satellite peaks characteristic for Fe²⁺ and Fe³⁺.

Appl. Surf. Sci. 100/101 (1996) 36

定量分析 (組成、デプスプロファイル)

元素	A	В	C	D
組成 (at.%)	24.5	20.0	5.5	50.0

※相対感度係数等のデータが必要。 BL46XUでは8 keV励起のデータベースを 整備している。

(硬X線)光電子分光法で得られる情報

キャリアタイプ (フェルミ準位に依存したピークシフト)

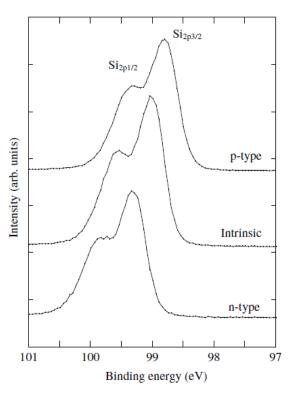


Fig. 2. XPS spectra of silicon wafers with hydrogen-terminated (001) surface for intrinsic silicon and the p- and n-types.

K. Yamamoto et al., Surf. Sci. 600 (2006) 3753

バンドベンディング

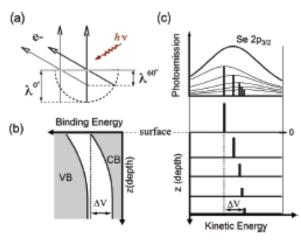


FIG. 1. (Color online) (a) Schematic of the experimental geometry. The angular distribution of photoemission is simultaneously measured in the range from 0 (normal) to 60° , being related with the electron escape depth λ^{θ} , where θ represents the emission angle. (b) Model for SBB in Bi₂Se₃, where ΔV represents the bending amplitude. (c) Representation of normal photoemission of Se $2p_{3/2}$. The vertical bars indicates the depth-dependent contribution of Se $2p_{3/2}$ to the normal photoemission.

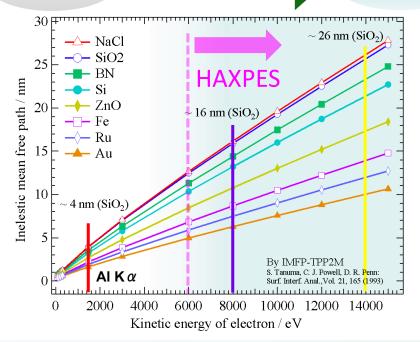
C. E. ViolBarbosa et al., Phys. Rev. B, 88 (2013) 195128

HAXPESのメリット(1): 検出深度が深い

ラボに比べてX線励起エネルギー大 (6~14 keV)

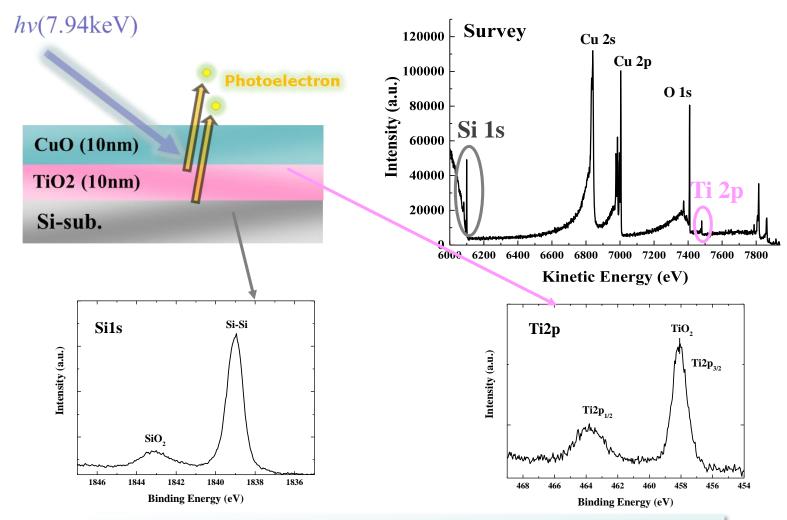
光電子の運動エネルギー大

$$(: E_k = h\nu - E_B - \Phi_s)$$


試料内における 光電子の非弾性散乱の影響小 非弾性自由行程(IMFP)大

Large Probing depth

HAXPES



検出深度大(ラボの数倍) → 試料深部を非破壊で分析できる

- Bulk sensitive (surface insensitive)
- Low surface/contaminant effects (surface preparation is less important)
- · Analysis of buried interfaces
- · Depth profiling by TOA dep.

HAXPESのメリット(1): 検出深度が深い

試料界面(深部)の情報(結合状態)を非破壊で検出できる。

HAXPESのメリット(2): 測定可能なピークが多い

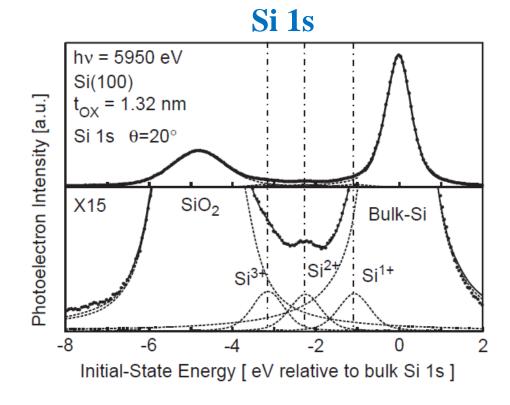
ラボXPS

- 1.5 keV以下ではピークが密集→他のピークと重畳しやすい
- ・ s軌道以外はピーク分裂で解析困難

HAXPES

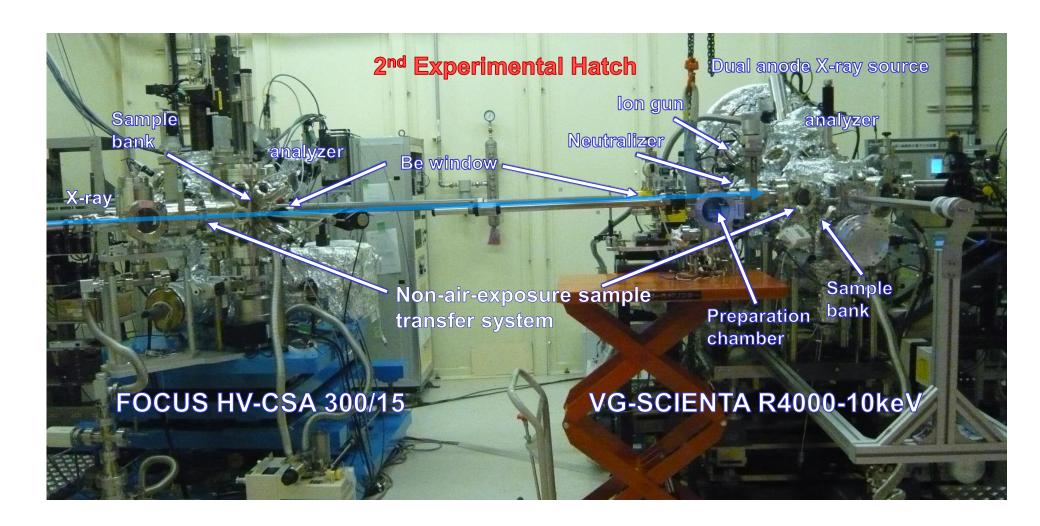

- 共存元素の内殻やオージェ、プラズ モンロス等のピークの重畳を回避し やすい
- ピーク分裂がなく解析が容易な深い 1s準位が使える(Al 1s: 1.65 keV, Si 1s: 1.84 keV)

Eler	ment	1s	2s	2p1/2	2p3/2	3s	3p1/2
1	н	14					
2	He	25				~	1.5 keV
3	Li	55				1	5~8 keV
4	Ве	112					~14 keV
5	В	188				0′	~ 14 KeV
6	С	284					
7	N	410	37				
8	0	543	42				
9	F	697					
10	Ne	870	49	22	22		
11	Na	1071	64	31	31		
12	Mg	1303	89	50	50		
13	Al	1560	118	73	73		
14	Si	1839	150	100	99		
15	Р	2146	189	136	135		
16	S	2472	231	164	163		
17	CI	2822	270	202	200		
18	Ar	3206	326	251	248	29	16
19	K	3608	379	297	295	35	18
20	Ca	4039	438	350	346	44	25
21	Sc	4492	498	404	399	51	28
22	Ti	4966	561	460	454	59	33
23	V	5465	627	520	512	66	37
24	Cr	5989	696	584	574	74	42
25	Mn	6539	769	650	639	82	47
26	Fe	7112	845	720	707	91	53
27	Co	7709	925	793	778	101	59
28	Ni	8333	1009	870	853	111	68
29	Cu	8979	1097	952	933	123	77
30	Zn	9659	1196	1045	1022	140	91
31	Ga	10367	1299	1143	1116	160	104
32	Ge	11103	1415	1248	1217	180	125
33	As	11867	1527	1359	1324	205	146
34	Se	12658	1652	1474	1434	230	167
35	Br	13474	1782	1596	1550	257	189
36	Kr	14326	1921	1731	1678	293	222


2019. 12. 20

HAXPESのメリット(2): 測定可能なピークが多い

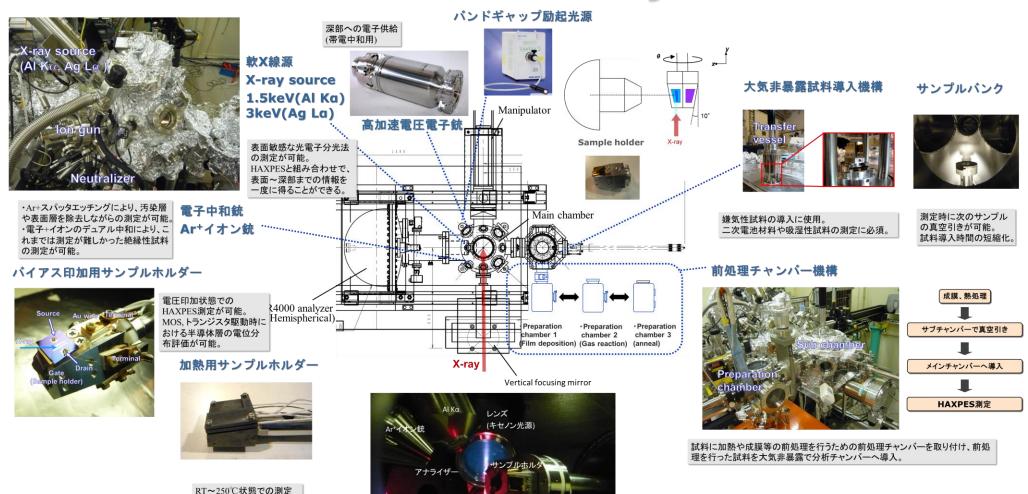
L. Zhang, Nucl. Instrum. IEEE Tans. Instrum. Meas. 66 (2017) 1297



K. Kobayashi, Nucl. Instrum. Methods Phys. Res. A 547 (2005) 98

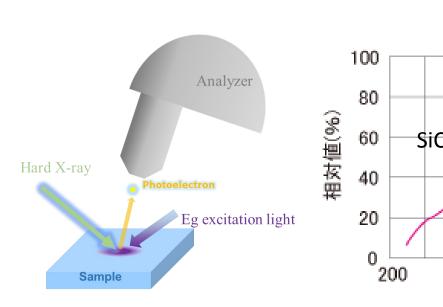
Spin-orbit splitting によるピークの分裂がない準位を選択することで、解析が比較的容易になる場合がある。

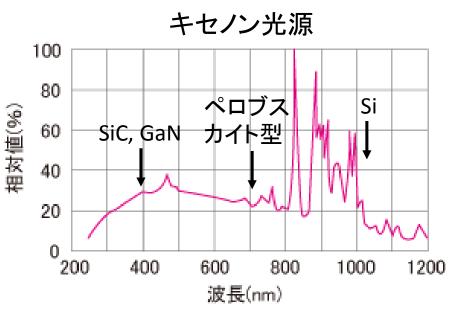
SPring-8 BL46XUのHAXPES装置

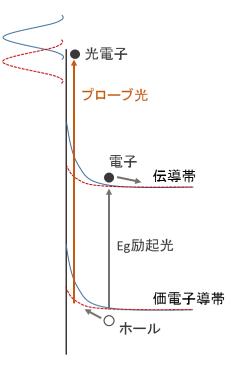

HAXPES in BL46XU of SPring-8

R4000-10kV vs. HV-CSA 300/15

	Scienta Omicron R4000	Focus HV-CSA 300/15	
type	Hemispherical	Cylindrical sector The sector of the secto	
KE	≤ 10 keV (normally operated at 8 keV)	≤ 15 keV	
energy resolution	high Exp. data — fitting Si(111)DCM +Si (444) CC Slit size: 0.5C, Ep=200 eV, RT 7938 7939 Kinetic energy /eV	Si(333)DCM Slit size: 0.5, Ep=100 eV, RT hv~14016.44 eV delta E 0.501 eV 14015.0 14016.0 14017.0 14018.0 Kinetic energy/eV	
efficiency	high	medium	
stability	Very stable at normal condition (8 keV)	Stable but sometimes discharges at ≥12 keV	
others	Auto-meas. system with GUI. Peripheral devices	Blanking electrode for time- resolved exp.	

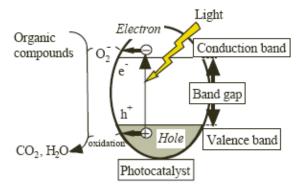

R4000 HAXPES system



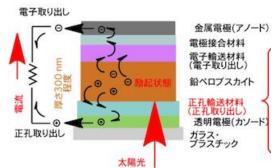

が可能。

電子銃

バンドギャップ光照射測定



Surface photovoltage effect


バンドギャップ光照射測定

光触媒

反応時の表面電位や反応物

有機太陽電池(ペロブスカイト型)

発電層の電子状態と発電効率の関連

フォトクロミック材料

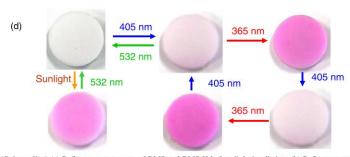
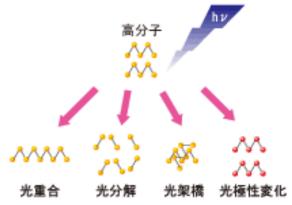
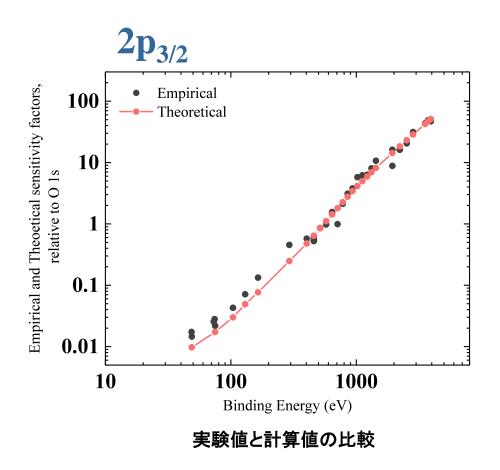



Fig. 3. (Color online) (a) Reflectance spectrums of BMS and BMS-H before light irradiation. (b) Reflectance spectrums of BMS and BMS-H after 405 nm light irradiation. (c) Reflectance spectrums of BMS and BMS-H after 365 nm light irradiation. (d) Photographs of BMS-H before and after light irradiation.

M. Akiyama et al, J. Ceram. Soc. Jpn, 119, 105, 2011


光励起時の電子状態と色の関係

光化学的な反応

2019, 12, 20

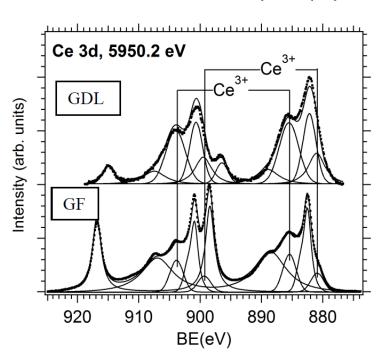
相対感度係数

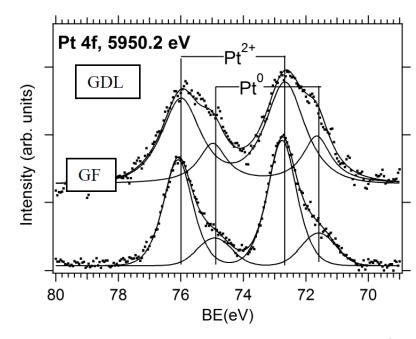
Experimentally based relative sensitivity factors for 7.9 kev (relative to O1s = 1)

Element	1s	2s	2p _{3/2}	Element	2s	2p _{3/2}	3d _{5/2}
Li	0.01			Cu	5.9	3.2	
С	0.30			Zn	6.5	3.8	
Ν	0.57			Ga	7.1	4.5	0.038
0	1.0			Ge	7.8	5.3	
F	1.6			As	8.5	6.2	0.080
Na	3.9	0.25	0.005	Se	9.3	7.2	0.11
Mg	5.7	0.36	0.012	Sr	12.8	12.6	0.31
Al	8.1	0.51	0.027	Zr	14.8	16.3	0.44
Si	11.1	0.68	0.052	Мо	17.0	20.7	0.58
Р	14.9	0.85	0.078	Rυ	19.3	25.8	0.72
S	19.7	1.1	0.12	Pd	21.9	31.9	0.88
CI	25.4	1.2	0.17	Cd	24.6	39.1	2.3
K	30.1	1.8	0.36	In	26.1	43.2	2.7
Sc	26.9	2.5	0.66	Sn	27.7	47.7	3.0
Ti	25.6	2.8	0.84	Sb	29.3	52.4	3.4
V	24.4	3.2	1.0	Hf			18.1
Cr	23.3	3.6	1.3	Ta			21.1
Mn	22.3	4.0	1.6	W			25.4
Fe	21.3	4.5	1.9	lr			42.7
Со		4.9	2.3	Pb			100.2
Ni		5.4	2.7				

S. Yasuno et al., Surf. Interface Anal. 50, 1191 (2018)

BL46XU HAXPES(8 keV)では半定量解析が可能。 現在 6~10 keVの相対感度係数データベース構築中。


2019, 12, 20


触媒材料の応用事例の紹介

- -HAXPES
- Ambient pressure HAXPES, XPS
- Environmental cell with membrane window

HAXPES

Pt-CeO2ターゲットのスパッタ成膜 基材の影響

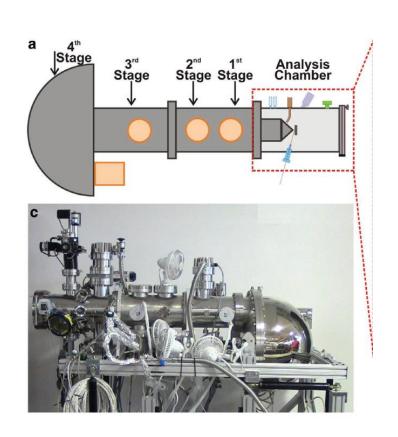
基材の種類によって価数の異なる成分比率が変化する

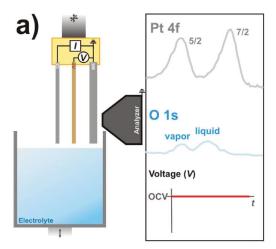
XPS(AI kα)と比較により、表面側と深部側の状態の差異も評価可能。

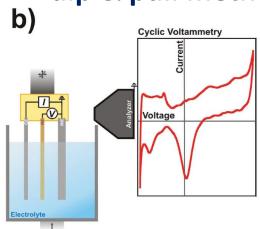
GDL: Gas diffusion layer

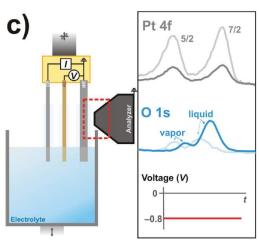
GF: Graphite foil

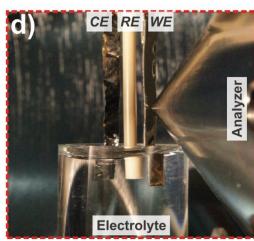
Ce³⁺/Ce⁴⁺

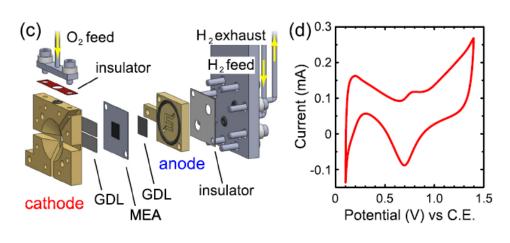

GDL: 1.15

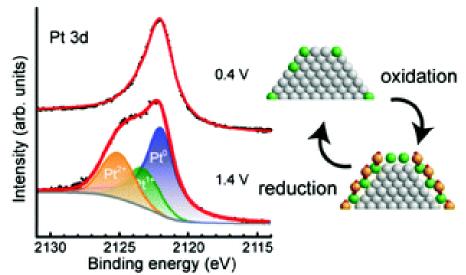

GF: 0.21


R. Fiala et al., J. Electrochem. Sci. 8 (2013) 10204 SPring-8 BL15XU (6 keV)

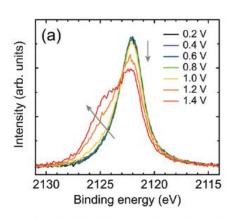

Ambient pressure HAXPES

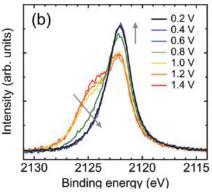

dip & pull method



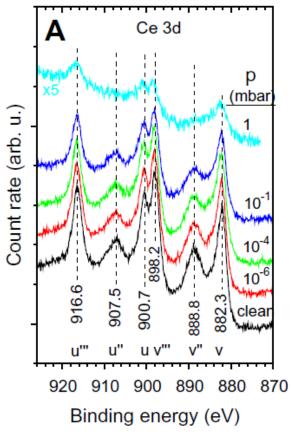

大気圧に近い状態(試料周り)での測定が可能。 近年はより高圧状態へ。

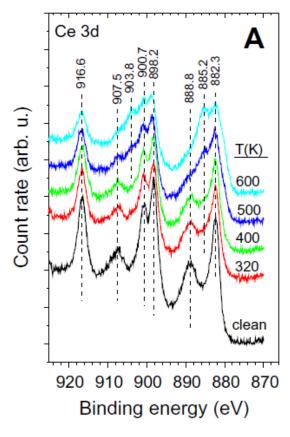
S. Axnanda et al., Nucl. Instrum. Scientific reports (2015) Advanced Light Source (4 keV)


Ambient pressure HAXPES


PEFCセルのカソード電極表面のin situ評価

cathode:4000 Pa




Y. Takagi et al., Appl. Phys. Lett. 105 (2014) 131602 Y. Takagi et al., Phys. Chem. Chem. Phys. 19(2017)6013 SPring-8 BL36XU (8 keV)

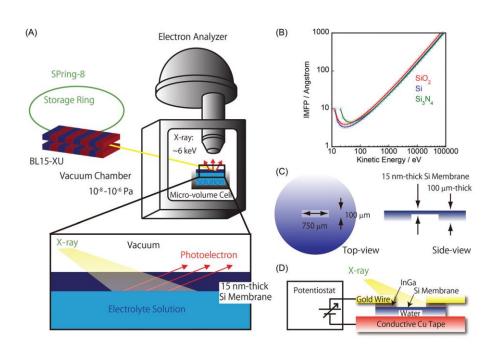
Ambient pressure PES (AI Kα)

CeO2(111)film on Cu(111) エタノールとの反応

Ethanol pressure

Temperature

エタノール圧、試料温度に依存して Ce⁴+⇒Ce³+への還元反応が起こる


L. Ovari et al., J. Catal. 307 (2015) 1321 XPS (Al $K\alpha$)

2019, 12, 20

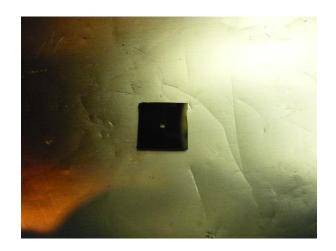
Environmental cell with membrane window

15 nm Si membrane

T. Masuda et al., Appl. phys. Lett. 103 (2013) 111605 BL15XU (6 keV)

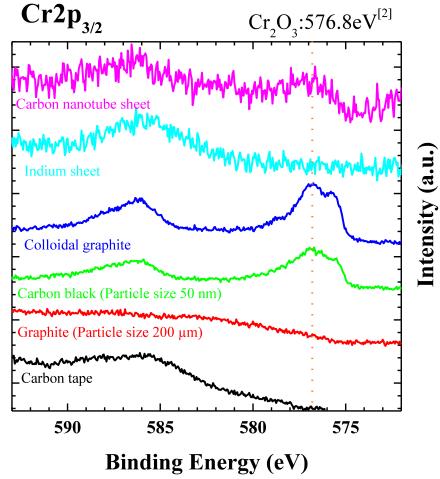
メンブレン越しに溶液やガス雰囲気下の測定が可能。

24 nm SiN membrane



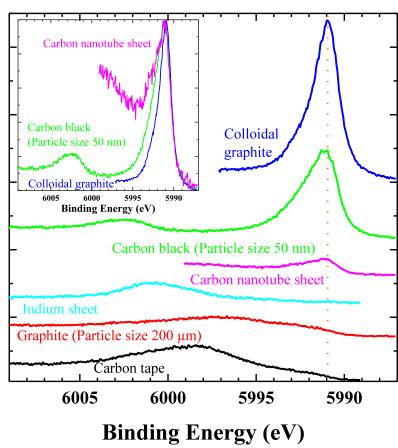
E. Tsunemi et al., J. appl. phys. 117 (2015) 234902 BL46XU (8 keV)

Environmental cell with membrane window


SiNメンブレン(30nm) 市販化されており、購入が可能 封止方法には工夫が必要

2019. 12. 20

HAXPESのチャージアップ対策

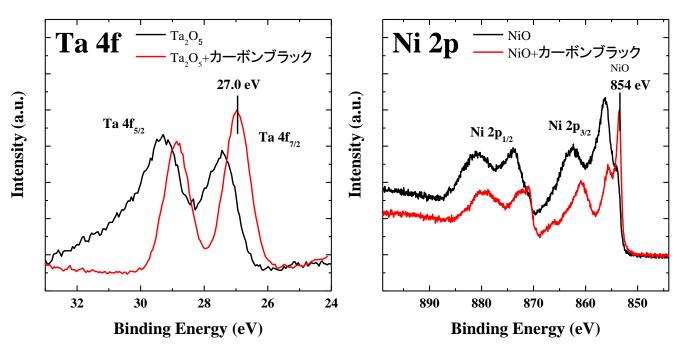

Cr₂O_{3 powder}

Intensity (a.u.)

カーボンブラック、コロイダルグラファイト、 カーボンナノチューブ保持材で効果を確認。

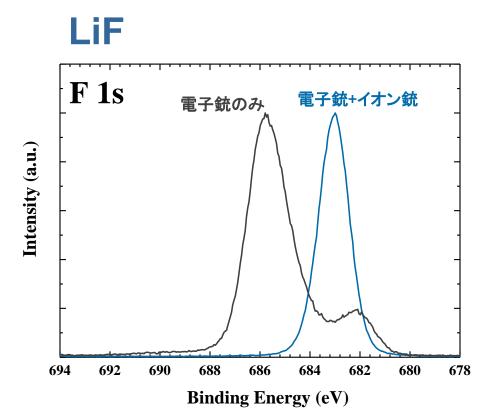
Cr1s

⇒基本的にはカーボンブラックを使用

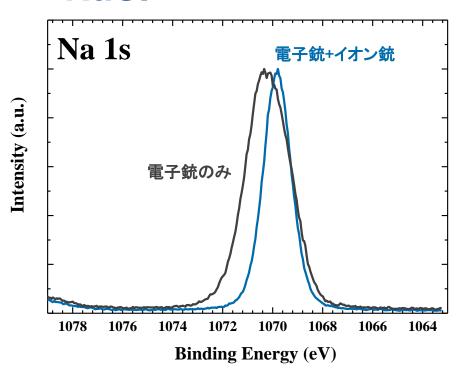

2019, 12, 20

- 混合法 (粉末状試料)
 - -カーボン粉末
 - コロイダルグラファイトでシート状に形成
- 電子、イオンによる中和(薄膜、板状試料)
 - •電子(~10 eV)、イオン(~10 V)
 - ※試料によって条件は変える必要ある
 - •中加速電圧電子銃(~10 keV) 検討中
- 導電性膜コート(薄膜、板状試料、粉末試料?)
 - •Osコート 効果は大きい。Osのピーク数が多いので注意が必要。
 - •Cコート 絶縁性の大きなものは難しい。ピーク数が少ない。

粉末状試料 導電性炭素粉末と混合

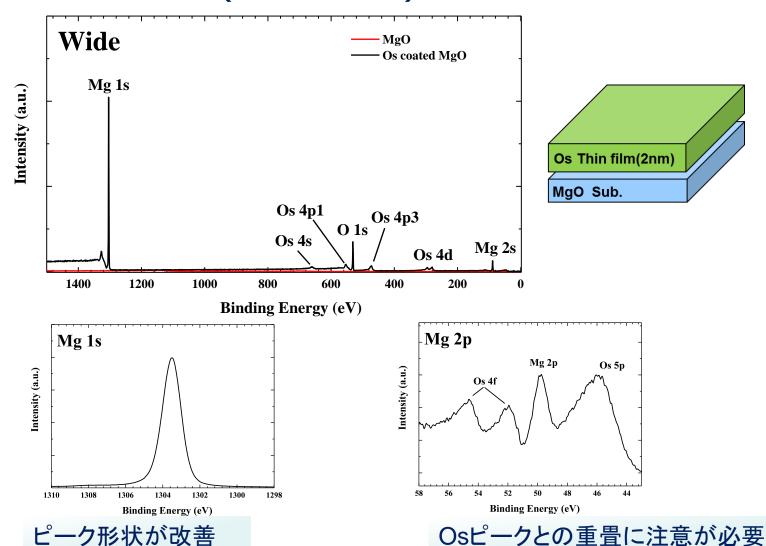

Ta₂O₅ powder

NiO powder



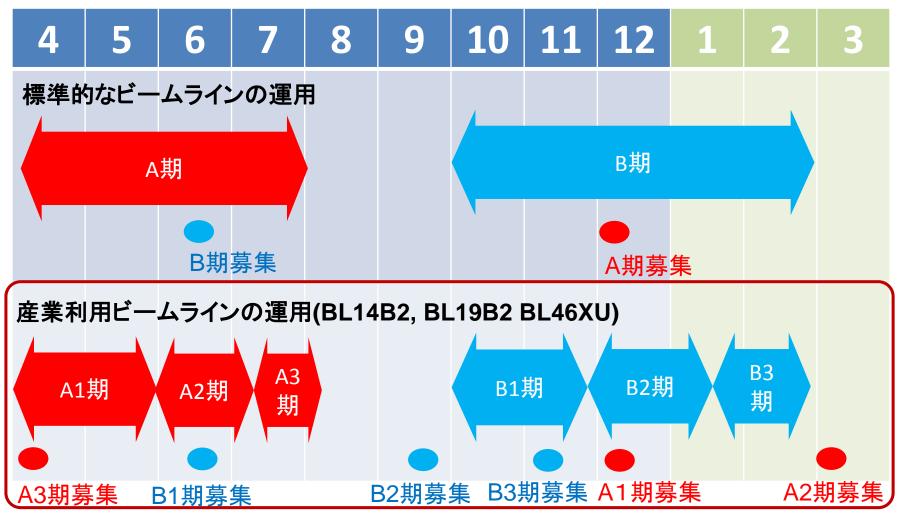
カーボンブラックにより、ピーク位置やピーク形状が改善

薄膜、板状試料 電子中和銃、低加速イオン銃


NaCl

電子銃+イオン銃でピーク形状が改善

2019, 12, 20


薄膜、板状試料(粉末状も?) 導電性膜のコート

2019, 12, 20

SPring-8 産業利用BLの課題募集について

課題募集時期

産業利用BL(BL14B2, BL19B2, BL46XU)は年6回募集。 他、測定代行などは随時募集。

成果専有型課題

課題の種類	課題募集	利用料	消耗品実費
一般課題	年2回 (産業利用BLでは年6 回)	480000円 /1シフト *	定額分:10560円/1シフト*
時期指定課題	随時、時期指定可能 (要 事前確認)	720000円 /1シフト *	+従量分(使用した消 耗品から算定)
測定代行課題	随時、時期指定可能 (要 事前確認)	180000円 /2時間	定額分:2640円/2時間 +従量分(使用した消 耗品から算定)

*1シフト=8時間

測定代行

JASRI産業利用推進室スタッフが、ユーザーに代わり、実験・測定を行う。

実験手法	XAFS(X線吸収微細構造)測定	BL14B2で実施中
	粉末X線回折測定	BL19B2で実施中
	小角X線散乱(SAXS)測定	BL19B2で実施中
	薄膜評価(GIXD/XRR)	BL46XUで実施中
	HAX-PES	BL46XUで実施中

2019. 12. 20

次回予定 2020A2期(2020年6月頃)課題募集

〆切は3月 中旬~下旬頃の予定

- •一般課題(産業利用分野)
- •大学院生提案型課題
- •成果専有課題(一般課題) など

宜しければ、是非ご検討ください。 詳しくは下記URLの説明をご覧ください。 http://www.spring8.or.jp/ja/users/proposals/call_for/

2019. 12. 20

連絡先

HAXPESにご興味のある方、一度使ってみたい方、申請書の書き方、内容等々、 お気軽にご相談ください。

BL46XU HAXPES

安野 聡: yasuno@spring8.or.jp

産業利用推進室ホームページ http://support.spring8.or.jp/index.html