

第15回SPring-8金属材料評価研究会/第48回SPring-8先端利用技術ワークショップ 「鉄鋼材料の放射光利用」

放射光(PF)を用いた原燃料解析事例

日本製鉄株式会社技術開発本部 先端技術研究所 村尾玲子

日本製鉄株式会社

鉄鋼材料・鉄鋼プロセス解析のニーズ

NIPPON STEEL

公開:2019年12月19日第15回SPring-8金属材料評価研究会/第48回SPring-8先端利用技術ワークショップ © 2019 NIPPON STEEL CORPORATION All Rights Reserved.

Outline

1. 背景

焼結分野におけるX線を使った構造解析のニーズ

2. 解析事例
1)焼結素反応解析(高温XRD)
2)カルシウムフェライトの還元反応解析(高温XAFS/XRD)
3)焼結鉱の化学状態イメージング(XANESイメージング)

焼結分野におけるX線を使った構造解析のニーズ

NIPPON STEEL

公開:2019年12月19日第15回SPring-8金属材料評価研究会/第48回SPring-8先端利用技術ワークショップ © 2019 NIPPON STEEL CORPORATION All Rights Reserved.

カルシウムフェライト生成過程

製銑プロセス: 固-液-気 反応、非平衡反応

T. Takayama, M. Kimura, R. Murao, *CAMP-ISIJ*,**25**,1272(2012)

·ing-8金属材料評価研究会/第48回SPring-8先端利用技術ワークショップ ◎ 2019 NIPPON STEEL CORPORATION All Rights Reserved.

NIPPON STEEL

公開:2019年12月19日第15回SPring-8金属材料評価研究会/第48回SPring-8先端利用技術ワークショップ © 2019 NIPPON STEEL CORPORATION All Rights Reserved.

事例1) 焼結素反応解析 迅速in situ X線回折法

焼結鉱加熱パターン

NIPPON STEEL

試料(試薬混合物)

mass%	Fe ₂ O ₃	CaCO ₃ *	Al_2O_3	SiO ₂		
(A)	90	10	-	-		
(B)	76.5	14.5	5.0	4.0		
*CaO換算						

NIPPON STEEL

Fe₂O₃-CaO系のCCT曲線図

CCT: continuous cooling transformation

^{© 2019} NIPPON STEEL CORPORATION All Rights Reserved.

事例2) カルシウムフェライトの還元反応解析

[目的]焼結鉱中に含まれる種々のカルシウムフェライト(CF)の 還元挙動の解明

・脈石成分(Al, Si...)を含む多成分系CFに関する情報はほとんどない

本研究

単相のCFの還元反応過程のIn situ XAFS解析 ⇒Fe, Caの価数・配位構造変化をリアルタイム観察 ⇒還元速度を定量的に解析 ⇒BNで希釈することで組織の影響は排除

previous reports: T. Takayama, M. Kimura, CAMP-ISIJ, 23,694(2010)

M. Kimura, et. al: Journal of Physics: Conference Series, 430, 012074(2013)

In situ observation for reduction @ KEK-PF BL9A

_____馬材料評価研究会/第48回SPring-8先端利用技術ワークショッフ © 2019 NIPPON STEEL CORPORATION All Rights Reserved.

NIPPON STEEL

In situ XANES of CaFe₂O₄ (Fe K-edge)

Red: before reduction

Blue: 51.3min

Isosbestic points observed at 7122 eV and 7143 eV after 13 min.

 \Rightarrow approximate as 1st order reaction [Fe(II) \Leftrightarrow (1-x)Fe(II) + x Fe(0)]

事例3) 焼結鉱の化学状態イメージング

還元処理条件

(指定温度到達後すぐにN2ガス急冷)

試料断面の相の定性(XRD)

	Α	В	С	D
α-Fe ₂ O ₃	Ø	Ø	Δ	-
Fe ₃ O ₄	0	0	0	-
SFCA	\triangle	\bigtriangleup	\triangle	-
FeO	-	-	-	0
Ca ₂ SiO ₄	-	-	-	\triangle
$Ca_2AI(AISiO_7)$	-	-	-	Δ

*SFCA: Ca₂(Fe,Ca)₆(Fe,Al,Si)₆O₂₀

薄片試料(30µm)を作成

Semi-micro beam XAFS measurement at PF BL15A1

NIPPON STEEL

公開:2019年12月19日第15回SPring-8金属材料評価研究会/第48回SPring-8先端利用技術ワークショップ © 2019 NIPPON STEEL CORPORATION All Rights Reserved.

NIPPON STEEL

Fe酸化物のFe K-edge 蛍光XANESスペクトル

(SDD 90°鉛直配置, Gap sync, dThetaPM scan)

NIPPON STEEL

公開:2019年12月19日第15回SPring-8金属材料評価研究会/第48回SPring-8先端利用技術ワークショップ © 2019 NIPPON STEEL CORPORATION All Rights Reserved.

Sample Cの解析結果 元素分布 (ラボX線顕微鏡, spot size Φ10μm)

NIPPON STEEL

Sample Dの解析結果 元素分布 (ラボX線顕微鏡, spot size Φ10μm)

NIPPON STEEL

Sample B,C,Dの価数分布

NIPPON STEEL

まとめ

価数の妥当性⇒各相単相の反応解析結果と対応
✓ Sample B, C: Fe rich 領域がFe(II/III)まで還元
→ 低温での被還元性 Fe₂O₃ > カルシウムフェライト(SFCA)

✓Sample D: Fe(II), Fe(III/II)の領域が存在

Carich領域のFe価数が低い傾向。

→ SFCAが分解し、Ca化合物中にFe(II)が固溶 生成したFeOは若干III価を含むと推測

解像度

✓気孔周囲にみられるフリンジは試料厚み(30µm)とX線入射・検出角度に 起因。

✓ 微細亀裂 (~10µm)は見えていない

今後の課題

試料薄片化

微細気孔・亀裂との関係はμビームで評価 測定時間短縮

NIPPON STEEL

NIPPON STEEL

- ▶ 原燃料プロセスは反応が複雑で生成物も不均一 まだ分かっていないことが多い
- ラボのX線装置(XRD, CT等)も進歩しているが、放射光でしか わからないこともある
- > 複数の分析手法を相補に利用することが不可欠

<共同研究・謝辞> 高エネルギー加速器研究機構 木村正雄 教授 君島堅一 准教授 武市泰男 助教

参考文献

・焼結鉱の相定量

[1] T. Takayama, R. Murao and M. Kimura, ISIJ Int., 58, 1069 (2018). • 事例1

[2] M. Kimura, R. Murao, ISIJ Int., 53, 2047 (2013).

・事例2

[3] M. Kimura, Y. Uemura, T. Takayama, R. Murao, K. Asakura and M. Nomura, Journal of Physics: Conference Series, 430, 012074 (2013).

[4] R. Murao, K. Sugiyama, CAMP-ISIJ, 28 (2)(2015).

[5] R. Murao, M. Kimura, CAMP-ISIJ, 29 (2)(2016).

▪事例3

[6] R. Murao, Y. Takeichi, H. Nitani and M. Kimura, CAMP-ISIJ, 28 (2015).

[7] M. Kimura, I. Obayashi, Y. Takeichi, R. Murao and Y. Hiraoka, Scientific Reports, 8, 3553 (2018).

[8] Y. Niwa, Y. Takeichi, T. Watanabe and M. Kimura, AIP Conference Proceedings, 2054, 050003 (2019).

