XAFSと他の手法を併用した触媒作用機構研究 :排ガス浄化、水素化、アルカン脱水素を例に

(北海道大) 清水 研一

<u>内容</u>

三元触媒:担体(La)とPdの界面協働作用
NH₃-SCR用Cu-CHA: 還元・再酸化素過程のoperando分光研究
リーンNOx吸着剤(Pd-CHA): NOによるバルクPdの原子状分散
SCR用Ag/Al2O3: 雰囲気変動によるAgの可逆的凝集・再分散
In-zeolite: 金属ヒドリドを活性種とするアルカン脱水素機構

	鳥屋尾 隆 助教	PdLa/Al ₂ O ₃
山北	前野 禅 特任講師	PdCHA, 脱水素
浙了 了干	Chong Liu(JSPS-PD)	DFT
	Yuan Jing (D1)	PdLa/Al ₂ O ₃
	安村 駿作(D1)	PdCHA, 脱水素
	窪田 博愛 (D1)	CuCHA, Ag/Al ₂ O ₃

Institute for Catalysis, Hokkaido University

自己紹介

2000年	名古屋大学・エ・博士	@服部 忠 研究室	
2000年	新潟大学・エ・助手	@北山 淑江 研究室	
2004年	名古屋大学・エ・助教	@薩摩 篤 研究室	
2010年	北大・触媒センター・准教		`
2015年	北大·触媒科学研究所·教	教授	

アエリエエ

	名大	薩摩 篤先生	••operando IR, UV-vis
謝辞	京大	吉田 寿雄先生	・・普通のXAFS
	JASRI	本間 徹生様	••in situ XAFS
		加藤 和男様	
	工学院大	奥村 和先生	
	京大	朝倉 博行先生	••operando XAFS

Institute for Catalysis

1. $Pd/La-Al_2O_3$ for TWC

Laは Al₂O₃の焼結防止剤

三元触媒<mark>活性</mark>に対する効果は?

Pd上への炭化水素の強吸着を抑制

H. Muraki, et al., I&EC, **1986**, 25, 202 H. Muraki, et al., Appl. Catal., **1989**, 48, 93

NO還元の必須元素(Rh)を使わずに低温脱硝を達成するには?

Laには焼結抑制(アンカー効果)、活性向上、2つの効果がある!

排ガス規制モード(US・LA-4)走行試験

調製、構造

Synthesis of La((Impregnation m	(X)/Al ₂ O ₃ nethod)		Sy (In	nthesis of Pd/l	La(X)/Al ₂ O ₃ ethod)	
γ -Al ₂ O ₃ La(NO ₃) ₃ H ₂ O			L F F	.a/(X)Al ₂ O ₃ Pd nitrate aq. H ₂ O		
Impregnatio	n of γ-Al ₂ O ₂ pow	vder into		Stirring at r.t.	for 15 min.	
$L_2(NO_2)$, agua solution				Evaporation under vacuum at 50 °C		
Drying in air at $120 \degree$ C for 2 h			Drying at 90 °C for 12 h			
		Calcination in air for 3 h				
Calcination in air at 600°C for 2 h			H_{2} reduction at 500 °C for 0.5 h			
La(X)/Al ₂ O ₃ (X = 5, 15, 30 wt.%) Pd/La(X)/Al ₂ O ₃ (Pd = 1wt.%)						
Catalyst	T _{Calcination} / °C	T _{H2 reduction} / °C	S _{BET}	/ m ² g ⁻¹	Pd size ^b / nm	
Pd/Al ₂ O ₃	500	500	156		3.4	
Pd/La(15)/Al ₂ O ₃	500	500	129		3.7	

aPd loading amount = 1 wt.%. ^bEstimated from the CO adsorption experiments.

HAADF-STEM

$La(15)/Al_2O_3$

$Pd/La(15)/Al_2O_3$

Pd-K edge XAFS

Measured under a flow of 5% H_2 /He at 200 °C. The catalyst was pretreated under a flow of 5% H_2 /He (200 cm³ min⁻¹) at 400 °C for 0.5 h, followed by cooling to 200 °C.

Sample	Shell	N ^a	R (Å) ^b	σ (Å) ^c	R _f (%) ^d
Pd/Al ₂ O ₃	Pd–Pd	3.1	2.67	0.11	0.4
Pd/La(15)/Al ₂ O ₃	Pd–Pd	3.3	2.67	0.10	0.5

^a Coordination numbers. ^b Bond distance. ^c Debye-Waller factor. ^d Residual factor.

EXAFS···Pdは金属状態 XANES···La添加で、高エネルギー側にシフト→Pdはちょっと電子不足

DFT, CO吸着IR

Computational details: VASP, GGA-PBE

Institute for Catalysis, Hokkaido University¹⁰

NO, CO分圧依存(150°C)

NO流通(200°C)中のin situ XANES

Measured in a transmittance mode at the BL01B1 at 200 °C; Acquisition time for one XAFS spectrum = ~2 min; 400 mg of Pd/Al_2O_3 or $Pd/La(15)/Al_2O_3$ with pellet forms (φ 10 mm); Pretreatment: 5% H_2/He (200 cm³ min⁻¹) at 400 °C for 0.5; Total flow rate = 800 cm³ min⁻¹; SV = ~30, 000 h⁻¹.

Institute for Catalysis, Hokkaido University

ラボに戻って、IR-MSで、触媒とNOの反応を観ると

この反応を起こせる反応場はない!

NO⇔CO繰返し導入。非定常だが、連続的な低温脱硝がおこる

Pdと担体のLa(Lewis酸)界面以外にこの反応を起こせる反応場はない

Institute for Catalysis, Hokkaido University

界面のPdが活性サイトの場合、速度は粒径に -2次 で依存

Pdと担体のLa(Lewis酸)界面が活性サイト

Pdと担体Lewis酸の界面で低温NO還元が進行

$$\begin{array}{l} 2\text{NO} \rightarrow \textbf{N_2O} + \text{PdO} \\ \text{PdO} + \text{NO} \rightarrow \text{Pd-ONO} \cdots \text{La}^{3+} \\ \text{Pd-ONO} + \text{CO} \rightarrow \text{Pd} + \text{CO}_2 + \text{NO} \end{array}$$

1. Pdのシンタリング抑制

- 2. 電子的効果
 - La無しの場合、COがNO吸着を阻害

Laが、Pdを電子不足にすることで、CO被覆率を減少させ、 結果的にNOの活性化を促進

3. 界面での協働作用 Pd・La界面でNOが不均化。NO₂をLaが一旦安定化するため、低温での 2NO+CO→N₂O+CO₂反応が可能に

 $\begin{array}{l} 2\text{NO} \rightarrow \textbf{N_2O} + \text{PdO} \\ \text{PdO} + \text{NO} \rightarrow \text{Pd-ONO} \cdots \text{La}^{3+} \\ \text{Pd-ONO} + \text{CO} \rightarrow \text{Pd} + \text{CO}_2 + \text{NO} \end{array}$

Pd

T. Toyao, ACS Catal., 2020

NH₃-SCR用Cu-AFX: 還元・再酸化素過程のoperando分光研究

- 横国 窪田好浩先生
- 東大 小倉 賢先生
- 名大 薩摩 篤先生・in situ UV-vis
- 京大 朝倉博行先生 · in situ XAFS

Institute for Catalysis, Hokkaido University

NH₃-SCR機構の文献調査

<u>既知</u>

1. 活性サイトはCu²⁺/Cu⁺イオン

2. Cu²⁺⇔Cu⁺ redox cycleで進行

<u>不明点</u>

- 1. 素過程を直接見たのか?
- 2. 再酸化機構
- 3. NO₂, NO₃⁻, NO₂⁻, NH₄⁺の役割

Beato, ACS Catal. 2015, 5, 2835; Schneider, J. Am. Chem. Soc. 2016, 138, 6041; Schneider, Science 2017, 357, 898

本研究の目的(と結論)

分光・速度論・計算化学でSCR機構を決定

22

実験方法

- XANES: 反応中の各酸化数のCuの割合を測定
- UV(Cu²⁺量), MS(N₂)の連続測定でCuの酸化還元速度とN₂生成速度を同時分析
- IR: Cu上の吸着NH₃量の変化を測定
- 定常・非定常(過渡)、両方の条件でのNO還元速度・Cu⁺/Cu²⁺割合を数値化

反応中のその場分析

ガス組成: NO=NH₃= 500 ppm, O₂=10%, H₂O=0% 24

IR/Mass

UV-vis/Mass

Institute for Catalysis, Hokkaido University

Cu K-edge XAFS @SPring-8

NH3-SCR 反応中のCuの状態(in-situ XANES)

SCR中、定常状態ではこの平衡状態をみることになるので、 メカニズム明確化のためCuの還元過程、再酸化過程を分けて解析

還元素過程: $Cu^{2+}-NH_3 + NO \rightarrow Cu^+ +H^+ +N_2 +H_2O$

Institute for Catalysis, Hokkaido University

酸化過程: Cu⁺ + 1/4O₂ +H⁺ → Cu²⁺ + 1/2H₂O

再酸化過程のin-situ UV-vis (200°C)

NO、NO₂はCu⁺の酸化を促進しない!!

Cu-AFX上でのNO還元のメカニズムが確定

Cu-CHA, Cu-ZSM-5でも同じ機構です Fe-zeoliteの機構は違う(注意!)

4個のCu⁺とH⁺を1個のO₂で酸化するには?

$$4\left[H_{3}N-Cu-NH_{3}\right]^{+}+4H^{+}+O_{2}$$

Aft cage中のAl(cu)は4個より少ないが・・・

- AFX unit cell (48T, **Si/Al = 11**)
- Periodic DFT by VASP (PBE+D3, ENCUT = 500 eV, Γ-point)

Institute for Catalysis, Hokkaido University

31

4つのCu⁺種が1つのケージに集まる!?

[Cu(NH₃)₂]⁺(→→→)は8員環を通って 簡単に(Δ*E*[≠]=35 kJ/mol)移動できる!

O₂と4個のCu⁺から1個のCu²⁺tetramerが容易に生成(障壁低い)

33

Institute for Catalysis, Hokkaido University

分光·速度論·計算化学でSCR機構を決定

Catal. Sci. Technol., 2020, 10, 3586 ChemCatChem 2020, 12, 3050 34

リーンNOx吸着剤(Pd-CHA): NOによるバルクPdの原子状分散

前野禅•安村駿作

Passive NOx adsorber (PNA)

尿素SCRよりも上流に設置することで 低温域におけるNO_x排出を抑制

塩基系NOx吸蔵材よりもSOx被毒を受けにくい

Pd/ゼオライト ゼオライト内Pdカチオンがリーン条件でNO吸着

K. Okumura, et al., *J. Phys. Chem. B* 2000, 104, 1050.K. Shimizu, et al., *J. Catal.* 2000, 195, 151.

2015年からにPd系PNAが流行ってる

Y. Murata, et al., SAE Int. J. Fuels Lubr. 2015, 8, 454.

D. Thompsett, et al., *Catal. Lett.* 2016, 146, 1706.

L. Jaeha, et al., Catal. Sci. Tech. 2019, 9, 163.

Institute for Catalysis, Hokkaido University
Pd/CHA: 水熱安定性の高いPNA材

Pore size 3.8×3.8 (Å)

問題点

液相イオン交換法では導入が困難 (水和Pdカチオンが大きいから?)

J. Szanyi, *et al.*, *J. Phys. Chem.* C 2017, 121, 15793. D. H. Kim, *et al.*, *Cat. Today* 2019, 320, 175.

発見!

<mark>Pd金属粒子</mark>/HCHA混合物を600℃でNO処理すると、<mark>原子状Pdが細孔内に</mark>生成!

従来の湿式法よりも高いPdイオン交換率 →高いNO吸蔵量

本研究

・分光法で分散化のメカニズムを解明

NO吸着特性を評価

Pd black を原料にした固相イオン交換

含浸法で調製したPd/CHAでも同様

バルクPdO@外表面

ゼオライト内にPdが分散!?

Pd²⁺上のNO, COのIR

NO処理により金属Pd粒子がzeolite内のPd²⁺イオンに変化

担持量の影響

担持量の増大に伴い、 Pdカチオン量も増大 担持量の増大に伴い、Brønsted酸点が減少 →イオン交換サイト上にPdカチオンが固定化

Sample	Pd担持量	NO/Pd	孤立Pd ²⁺ 量
Pd _{imp} /CHA(H ₂ NO)	5.4 wt%	0.76	4.1 wt%
Pd+CHA(NO)	5.4 wt%	0.76	4.1 wt%
Pd/CHA J. Szanyi, <i>et al., ACIE</i> . 2018, 57, 16672.	5.0 wt%	0.70	3.5 wt%

Institute for Catalysis, Hokkaido University

高分散化(600°C NO)中の構造変化

Institute for Catalysis, Hokkaido University

Pd metalはNOとの反応により、ゼオライト内Pdカチオンとして分散化 Pd blackを原料にした固相イオン交換反応による調製が可能 従来よりも高い担持量(4 wt%)で、CHAゼオライト内にPdカチオンを導入

Agの融点 = 962 °C

粒子径が小さいほど、表面エネルギー大(低融点)

Mater. Chem. Phys. 82 (2003) 225

担体が無い場合、2nmのAgの融点は、400°C

【仮説】アルミナ担体がAgをアンカー?

処理前後Agの構造をXRD, XAFSでしらべると

再度、シンタリングさせても、1000℃焼成で再分散

非白金族系の自己再生触媒(初めて)

K. Shimizu, ChemCatChem, 2010

$Ag(3wt\%)Al_2O_3OSTEM$

$Ag(10wt\%)Al_2O_3$ $\mathcal{O}TEM$, STEM

NO+O2処理中(400°C)のin situ XANES

金属Ag減少速度に対する酸化ガス(NO+O₂, O₂)の影響(in situ UV-Vis)

NO+O₂(400°C)中での金属Ag減少速度の分圧依存(in situ UV-vis)

O₂とNOの両方がAg金属粒子のAg⁺への分散に関与する

NO+O₂中のin situ IR (400°C)

Ag担持→凝集→再分散: Al_2O_3 のアンカーサイトは変化するのか?

Ag担持→凝集→再分散: Al_2O_3 のアンカーサイトは変化するのか?

Pyridine 吸着IR (200°C)

H₂⇔NO+O₂ 交互導入時のin situ UV-vis/MS, IR (600°C)

Institute for Catalysis, Hokkaido University

結論: Agの凝集・再分散メカニズム

【凝集】

 $2AI-OAg + H_2 \rightarrow 2Ag + 2AI-OH$

【分散】

Ag+ NO + 1/2O₂ → AgNO₃ (濃度勾配を駆動力に溶融塩として移動) AgNO₃ + Al-OH → Al-OAg + HNO₃ HNO₃ + Al-O → NO₃⁻···Al-OH(Lewis acid-base site)

$$O_2$$
中
2Ag + 1/2O₂ → Ag₂O
Ag₂O + 2Al-OH → 2Al-OAg + H₂OAgNO₃ (Ag+がカチオン伝導

CHAゼオライト内Inヒドリドを触媒活性点とする 選択的エタン脱水素反応

安村駿作•前野禅

表面金属ヒドリド

水素化・脱水素反応の活性点や中間体として作用する
不安定性かつ複雑な構造を有する
新規ヒドリド種の構造解析と触媒作用解明は未だ困難

C. Copéret et al., Chem. Rev. 2016, 116, 8463-8505

高温で生成・機能する表面金属ヒドリド種の触媒作用は未開拓

Ga, In-ゼオライトによる低級アルカン活性化

➢ <u>Ga-ゼオライト</u>: プロパン脱水素の活性種は[GaH]²⁺

A.T. Bell et al., *J. Am. Chem. Soc.* 2019, 141, 1614 J. A. Lercher, *J. Am. Chem.* Soc. 2018, 140, 4849

▶ In-ゼオライト

[InO]⁺を活性点とするCH₄-SCR

E. Kikuchi et al., *Catal. Today*, 1994, 22, 73-86

In⁺触媒によるCH₄変換

T. Baba et al., J. Phys. Chem. B, 2005, 109, 4263-4268

In-oxo種による低温CH₄活性化

Z. Maeno, et al., Phys. Chem. Chem. Phys., 2019, 21, 13415-13427

Inヒドリドの報告例はない

本研究

In-CHAのエタン脱水素の活性種・反応機構を実験・理論により研究

触媒調製

> Synthesis

還元前後のIn K-edge XAFS

Institute for Catalysis, Hokkaido University

In+-CHA, 500°C水素処理後の低温IR (-100°C)

[InH₂]⁺Z⁻が実験値に近い

[InH₂]⁺は新規化学種なので、更に確認をすべし!

InヒドリドにD2を曝すと(H-D交換のIR観察)

IRの帰属は[InH₂]⁺で正しそう

D2中で昇温した後の出口ガス分析

【結論】 CHA中のInヒドリドの構造は[InH₂]⁺である

エタン脱水素(600°C)

※工業法は無触媒、高温(>800°C)での熱分解を採用

In-CHAは炭素析出しにくい

高転化率条件での連続反応・再生

> 既報触媒との比較

触媒	濃度 [%]	温度 [K]	転化率 [%]	選択性 [%]	失活速度 [h ⁻¹]	再生	Reference
In-CHA	13	973	37.4	95.1	0.007	0	This work
Cr/SBA-15/Al ₂ O ₃ /FeCrAl	33	1023	47.4	86.9	0.002	×	Energy Fuels 2008, 22, 3631
Ga/SiO_2 -doped TiO_2	3	923	46.0	84.9	0.809	0	Fuel Process Tech. 2018, 246
Ni ₃ Ga/Al ₂ O ₃	10	873	10.0	94.0	0.017	0	ACS Catal. 2019, 9, 10464
PtSn-MgGaAlO	20	873	32.1	99.2	0.530	×	RSC Adv. 2017, 7, 22836
Pd-In/SiO ₂	5	873	15.0	100	0.289	×	Catal. Sci. Tech. 2016, 6, 6965

Institute for Catalysis, Hokkaido University
実験・理論による活性化障壁の比較

まとめ

In触媒は、過度のC-H解離による炭素生成を原理的に起こさない

