

第8回次世代先端デバイス研究会/ 第56回SPring-8先端利用技術ワークショップ 2021/03/03 15:10~16:05

絶縁膜表面での金属錯体単分子膜の作製と 有機トランジスタへの応用

田原圭志朗

兵庫県立大学 大学院物質理学研究科 構造物性学講座(阿部研)

これまで携わってきた研究分野																	
Ĥ		錯体化学·電気化学 配位子												² He			
3	4										5	6	7	8	9	10	
Li	Be									B		N	0	F	Ne		
11	12		(遷移金属)							13	14	15	16	17	18		
Na	Mg									AI	Si	Ρ	S	CI	Ar		
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	57-71	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	89-103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og

これまで合成した新規化合物に含まれる元素

分子のレドックスを活かした機能開拓

これまでの研究概要 電子ドナーとアクセプターの組合せ ①混合原子価 分子レベル 2ホール輸送 バルク物性

金属錯体の開発

有機半導体層

自己組織化単分子膜

界面の開発

量子セルオートマトン 方子設計指針:電荷の性質を機能に繋げるには?

混合原子価化合物の特徴:電荷分布の大きな変動

①混合原子価 新たな混合原子価亜種の開発 「電荷が関与する他の現象」との境界領域の開拓 プロトン応答性 組織化部位 電荷×電荷 超分子 プロトン移動 相互作用 Dalton Trans., 2014. 混合原子価 Organometallics., 2015. Chem. Commun., 2014. J. Organomet. Chem., 2016. Beilstein J. Org. Chem., 2019. Bull. Chem. Soc. Jpn., 2021. **∖** e⁻, 電荷分離 双性イオン化 CHEMISTRY A European Journal Bull. Chem. Soc. Jpn., 2018. [BCSJ Award] Chem. Eur. J., 2019. J. Org. Chem., 2019. - ACS Publication 光応答性 ゲストイオン応答性

<u>外部刺激への応答部位を共有結合で導入するアプローチ</u> <u>K. Tahara</u>* and M. Abe*, *Chem. Lett.*, 2020, 49, 485-492. [Highlight Review]

量子セルオートマトン(Quantum Cellular Automata, QCA)

電荷配置を0、1の情報とする新しい仕組みのデバイス

①混合原子価

量子ドットのフェロセンへの置き換えを目指して

①混合原子価

論理回路の動作シミュレーション

多数決回路ではなく、AND回路(A=0)、OR回路(C=1)として動作する

ゲストアニオンへの応答性の付与

これまでの研究概要 電子ドナーとアクセプターの組合せ

記合原子価
 分子レベル

2ホール輸送 バルク物性

金属錯体の開発

有機半導体層

自己組織化単分子膜

界面の開発

量子セルオートマトン 分子設計指針:電荷の性質を機能に繋げるには

自己組織化単分子膜 (SAMs: Self-Assembled Monolayers)

レドックス活性SAMsの2つの基板タイプ

現在の状況

✓ OH基リッチな絶縁体表面との連結様式が限られている

✓ 絶縁体表面での知見が少なく、デバイスへの応用へ繋がらない

有機電界効果型トランジスタ(OFET)

②有機トランジスタ

本研究: SiO₂表面上での金属錯体単分子膜

自己組織化単分子膜(SAM)の作製 フェロセンSAM

水の接触角変化

1 フェロセンSAM 自己組織化単分子膜(SAM)の評価

有機半導体薄膜の作製と評価

伝達特性

フェロセンによって 顕著なヒステリシスが出現

S. Kobayashi et al., Nature Mater., 2004.

電子供与性のアミノ基の効果

レドックス活性SAMの電荷捕獲層としての応用

線吸収端

微細構造、

IEXAFS)

放射光を利用した実験

検出深度が深い 予備実験 有機半導体層の下、 80nmまで埋もれた フェロセン由来の

ピークを検出

7110

7114

電圧印加その場測定の試み

有機半導体層が薄い方が、HAXPES測定に有利・膜厚23 nm デバイス動作せず

・膜厚123 nm デバイス動作OK

フェロセンSAM

硬X線光電子分光法(HAXPES)@BL46XU

cf. 酸化鉄のHAXPESデータ

BTBT部位を含む金属錯体の合成と評価

②有機トランジスタ BTBT部位を含む金属錯体の合成と評価

Pd 錯体の単結晶X線構造解析

T/K	100
Crystal system	monoclinic
Space group	P2 ₁ /n
<i>a</i> / Å	12.413 (3)
b/Å	17.240 (5)
c / Å	14.457 (4)
β / °	109.918 (8)
V / Å ³	2908.7 (14)
Ζ	4
R_1 / R_w	0.034 / 0.076
$\Delta ho_{ m max}$ / $\Delta ho_{ m min}$	0.69 / -0.78

分子間でのBTBT配位子同士のショートコンタクト

2 白金錯体SAM

錯体の反応性を利用したSAMの開発

機能性部位を表面の極近傍に導入可能

cf. アルキルスペーサーを用いる従来法(シランカップリング・官能基の化学吸着)

2 白金錯体SAM

Pt錯体の評価

モデル反応:溶液での配位子交換

自己組織化単分子膜(SAM)の作製 31

水の接触角測定

基板表面の疎水化

2 白金錯体SAM 自己組織化単分子膜(SAM)の評価 32

2 白金錯体SAM 自己組織化単分子膜(SAM)の評価 33

2 白金錯体SAM

有機半導体薄膜の作製と評価

伝達特性

SAM	HM	DS	白金		
領域	低電圧	高電圧	低電圧	高電圧	
移動度 (cm²/Vs)	0.038	0.25	0.33	1.80	増大
閾値電圧 (V)	-16.9	-25.9	-4.4	-25.7	減少
ON/OFF比	6.3>	< 10 ⁴	4.4 >	低下	

2 白金錯体SAM

トランジスタ動作の考察

c) 1.32 nm 1.32 nm 1.32 nm 1.32 nm 3.05 nm Height firm) 3 nm 1.32 nm 1.33 nm

SiO₂への真空蒸着の 初期過程のAFM観察

> C8-BTBT凝集体 1.32 nm

Y. Gao *et al.*, *Phys. Chem. Chem. Phys*, 2017.

低電圧領域:ホールの輸送がトラップに優勢 高電圧領域:トラップが飽和し、バルク側の C8-BTBTもホール輸送に関与