燃料電池アノード触媒の XAFS 解析

XAFS Studies on DMFC Anode Catalysts

実施課題番号:2006B0108 使用ビームライン:BL19B2

梅 武^{1*}、深沢 大志¹、水谷 衣津子¹、小林 剛史¹、吉木 昌彦¹、中野 義彦¹、

広沢 一郎²、西野 潤一²

1(株)東芝 研究開発センター、2高輝度光科学研究センター

*実験責任者

XAFS測定により燃料電池アノード触媒PtRuT(T=Zr,Ta,W)の元素状態、微細構造を調べた。添加元素の元素状態は元素種類に強く依存することがわかった。触媒に添加したTa、 Wの殆どは金属結合として存在するが、触媒に添加したZrの3割以上は酸化結合を持っている。 触媒のメタノール酸化活性機構は元素結合状態に依存するため、元素の複合添加による活性相乗効 果も期待できると考えられる。

背景

近年、メタノールを燃料とした直接型固体 高分子燃料電池(DMFC)はノートパソコン や携帯電話など携帯機器の長時間駆動を実現で きる次世代のモバイル用電源として盛んに開発 されている。DMFC燃料電池の発電源はアノ ード電極触媒表面でのメタノール酸化反応とカ ソード電極触媒表面の酸素還元反応であるが、 現状触媒の活性が低いため、理論電圧の半分ぐ らいがロス (熱)となってしまう。 DMFCシ ステムの究極の小型化には高活性触媒の開発が 不可欠である。燃料電池触媒はナノ微粒子であ り、その表面に起きる触媒反応はもとより、触 媒微粒子自体も極めて複雑であり、触媒反応機 構及び触媒設計が残念ながら未だに確立されて いない。本研究は大型放射光施設SPring 8の利用によって、新規DMFC燃料電池ア ノード触媒の元素状態、微細構造を明らかにす ることを目的とする。これまではPt-Ru,

Pt-Ru-(Sn,V,Hf)を検討した[1
2]。本報告はPt-Ru-T(T=Zr,T
a,W)触媒について、各元素吸収端における
XAFSスペクトルを測定し、各元素の結合状
態、微細構造に関する知見を得る。

実験

表1に試料の一覧表を示す。触媒試料はカ ーボンブラック担持体を用いてスパッタ法によ り作製した。各触媒の粒子サイズ、表面元素状 態を透過型電子顕微鏡(TEM)観察、光電子 分光法(XPS)によって評価した。なお、比 較用の薄膜試料としてSiウェハーの上に触媒 層をスパッタ成膜し、その上に表面酸化を防ぐ ためAuをコーティングした。

XAFS測定はSPring-8 BL1
 9B2にて行った。標準試料(酸化物、金属箔)
 は透過法、その他の試料は蛍光法(19素子S
 SD)によって、Zr, RuのK吸収端、W,

T a , P t の L 3 吸収端における X A F S スペ クトルをそれぞれ測定した。スペクトルの解析 は解析ソフト R E X を用いて行なった。

作製法	測定法
スパッタ法	蛍光法
比較用試料・標準試料	
スパッタ法	蛍光法
スパッタ法	蛍光法
市販品	透過法
市販品	透過法
市販粉末品	透過法
市販粉末品	透過法
市販粉末品	透過法
	作製法 スパッタ法 スパッタ法 スパッタ法 スパッタ法 スパッタ法 スパッタ法 スパッタ法 スパッタ法 スパッタ法 ホ販品 市販粉末品 市販粉末品

表1 試料一覧

結果と考察

TEM/XPS結果

スパッタ法により作製した各PtRuT触 媒は数nmの微粒子であることをTEM観測で 確認した。XPS評価では各触媒には何れもT 元素の酸素結合によるピークと金属結合による ピークが観測された。酸化結合によるピークが 結構強く、触媒粒子の表面にはT元素を含む酸 化層が存在することが示唆された。酸化結合(酸 化層)はスパッタ後微粒子が空気に接触する際 に形成したと考えられる。 <u>PtRuZr</u>

図1はZrを含む各試料のZr K吸収端 のXANESスペクトルを示す。XPS結果と 類似な結果を得た。パターンフィッティングで は、PtZr,PtRuZrの中に酸素結合を 持つZrの割合はいずれも約32%であること がわかる。Zrが触媒微粒子の表面に偏在して いることを推測できる。

図1 各試料のZr K吸収端のXANES スペクトル。

図2 PtRuZr試料のZr K吸収端の動 径構造関数。

図2はPtRuZr触媒の動径構造関数を 示す。McKaleシミュレーションによって カーブフィッティングを行い、Zr-Pt(R = 2.806 ,N=5.9)とZr-Ru金 属結合(R=2.568 ,N=6.1)が存 在するとフィッティングできる。触媒に含有す るPtとRuの原子比は1:1であるため、Z rはPt,Ruとランダムに混合していると思 われる。

PtRuTa

図3はTaを含む各試料触媒のTa L3 吸収端のXANESスペクトルを示す。各試料 のスペクトルを比較すると、PtRuTa触媒 中のTa元素は殆ど金属結合を持つと推測でき る。パターンフィッティングでは、金属結合の 割合は98.3%である。XPS分析の結果に はTaの酸素結合によるピークが観測されたが、 XPSの検出深度を考えると、触媒中のTa元 素は主に金属状態として触媒の内部に存在して いると推測できる。

図 3 各試料の T a L 3 吸収端の X A N E S スペクトル。

<u> Pt-Ru-W触媒</u>

図4はWを含む各試料のW吸収端のXAN ESスペクトルを示す。Taと同様、触媒に添 加したW元素は殆ど金属結合を持つことがわか る。XPS分析の結果にはWの酸素結合による ピークが観測されたが、XPSの検出深度を考 えると、触媒中のW元素は主に金属状態として 触媒の内部に存在していると推測できる。

図 4 各試料のW吸収端の X A N E S スペクト ル。

図 5 は P t₅ W と P t R u W 触媒の動径構 造関数を示す。R u の添加によってWの微細構 造が大幅に変更することがわかる。M c K a 1 e シミュレーションによってカーブフィッティ ングを行なった。P t WについてはW - P t (R = 2 .7 2 9 , N = 1 1 .1)が存在し、 P t R u WについてはW - P t (R = 2 .6 9 8 , N = 6 .0)とW - R u 金属結合(R = 2 .6 3 4 , N = 5 .9)が存在するとフィ ッティングできる。触媒に含有するP t とR u の原子比は1:1であるため、W はP t , R u とランダムに混合していると思われる。

図5 Pt₅W/CとPtRuW/CのW吸収 端の動径構造関数

W添加によるメタノール酸化活性の向上は これまでいくつかのグループに報告されたが、 活性機構はまだ不明である。上記結果からW添 加による活性向上はLigand機構も考慮す る必要があると思われる。

まとめ

XAFS測定により燃料電池アノード触媒 PtRuT(T=Zr,Ta,W)の元素状態、 微細構造を調べた。添加したTa,W元素の殆 どは金属結合を持ち粒子の内部に存在するが、 添加したZr元素の3割は粒子の表面に偏析し ていると思われる。金属結合を持つZr,W元 素はPt,Ruとランダムに混合している。触 媒のメタノール酸化活性機構は添加元素の存在 状態に依存するため、今後他元素の添加効果を 検討し、多元素の複合添加による活性機構の相 乗効果、低コスト高活性触媒を見出す可能性が あると思われる。

謝辞:高輝度光科学研究センターの平山様と本 間様のご協力を感謝します。

参考文献

[1] 梅ら SPring-8戦略課題利用報
 告書 2005B0902
 [2] 梅ら SPring-8戦略課題利用報
 告書 2006A0118

キーワード

燃料電池、触媒、DMFC、XAFS