HummingBird 自動測定マニュアル

- 1. HummingBird 自動測定を始める前に
- (1) HummingBird 本体を定盤の上流側に移動する。

HummingBird 本体

HummingBird 移動位置

(2) ピンホールをセットしたカセットホルダーを HummingBird にセットする。

- 2. HummingBird 設定手順
- 制御 PC 及び解析 PC 上の Teraterm を起動し、SPEC サーバー(192.168.71.2)にログイ ンする(スタッフが行う)。

Tera Term: 新しい接続		×
● TCP/IP	ホスト(T): <mark>192.168.71.2</mark> ビヒストリ(O) サービス: O Telnet TCPポート#(P): 22 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	>
○シリアル(E)	ポート(R):	\sim
	OK キャンセル ヘルプ(H)	

(2) 制御 PC 側から xafs -l speclog/xafs_*******.tlog(****は測定年月日)と入力する。

🔟 192.168.71.2 - xafsuser@localhost:~ VT	—	×
ファイル(F) 編集(E) 設定(S) コントロール(O) ウィンドウ(W) ヘルプ(H)		
Last login: Tue Sep 28 18:33:46 2021 from 192.168.71.3		^
[xafsuser@localhost ~]\$ xafs - speclog/start_20210927.tlog		

(3) 制御 PC のデスクトップ上にある"XAFS_HB 調整.exe のショートカット"をクリックする。

(4) "XAFS_HB 調整"ダイアログが開くので、"ログファイル名→HB 起動"ボタンを押す。

Х	XAFS_HB調整 ×							
	各軸HP決例スタート							
	ログファイル名設定 → HB起動							
	現在地をサンプル原点に設定							
	全軸リセット							
	このウィンドウを閉じる							

(5) "XAFS ログファイル"変更ダイアログが開くので、新しいログファイル名は表示のまま で OK ボタンを押す。

XAFS_ログファイル変更	×					
新しいログファイル名を入力してください						
XAFS_HB_220405						
<u>O</u> K	Cancel					

(6) 解析 PC 側から tail -f /home/xafsuser/speclog/start_******.tlog | tee -ai /mnt/speclog/bl14b2/start_******.log(****は測定年月日)を入力する(必要に応じて スタッフが行う)。

(7) "XAFS_HummingBird"ダイアログから"個別測定"ボダンを押す。ダイアログが起動し ていない場合は制御 PC のデスクトップ上にある" XAFS_HummingBird_new のショ ートカット"をクリックする。

(8) ピンホールをセットしたカセットホルダーのサンプル番号を入力する。

XAFS_HummingBird						
サンブル番号は?						
QK	Cancel					

(9) "amp. tune しますか?"と表示されるので、"いいえ"ボタンを押す。

XAFS_HummingBird X					
amp.tune しますか?					
(ば い(<u>Y</u>)	いいえ(<u>N</u>)				

(10) "SPEC を使って調整"ボタンを押す。

 XAFS_HummingBird	×	
SPECを使って調整		
測定		
サンプルを戻す		

(11) "PEAK スキャン(穴)"ボタンを押す。

(12) "Z-X-Z(自動)"ボタンを押して Z 軸、X 軸、Z 軸方向の順でピンホールスキャンを行う。

(13) ピンホールスキャンが終了したら、"XAFS_HB 調整"ダイアログの"現在地をサンプル 原点に設定"ボタンを押して原点位置を設定する。

X	XAFS_HB調整 ×						
	各軸HP決めスタート						
	ログファイル名設定 → HB起動						
	現在地をサンプル原点に設定						
	全軸リセット						
	このウィンドウを閉じる						

(14) 原点位置決めが終了したら、"XAFS_HummingBird"ダイアログの"SPEC で調整終了" ボタンを押す。

(15) "サンプルを戻す"ボタンを押してピンホールを元の位置に戻す。

2. HummingBird 自動測定

(1) サンプルを 50mm 角のホルダーに固定し、ホルダーをカセットにセットする。サンプ ルは 50mm 角のホルダーの中心になるようにしっかりと固定する(Appendix I 参照)。サン プルの固定が緩いとサンプル移動中にホルダーの中心からずれるので注意すること。

(2) サンプルをセットしたカセットホルダーを HummingBird にセットする。

(3) 測定条件設定ファイル(サンプルリスト_XAFS_HB_20201020_default.xlsm)を開く。フ ァイルはデスクトップ上にあるものを各自のユーザーフォルダにコピーして用いる。測定 条件設定ファイルに各サンプルの測定条件を記入する。

	Α	В	С	D	Е	F	G	Н	Ι	J	K	L	M	N	0	Ρ	Q	R	S		1
1	date memo	2022-04-05 17:29:20 etc	測定条件 アップロード	各コラムの入	力方法	lt∫⊐,×	ント」参照	2													
		•			光学	調整	`		SSD	SSD条件	Gain	Gain	Preedge	Range	Dwell	繰返	待ち	slit		· ·	
3	t –	サンブル名	データ名(.dat)	測定対象	調整	条件	結晶面	T/F	調整	decX/mm	調整	調整条件	/eV	/A-1	/msec	回数	/sec	/mm コ火	h .		
4	61	1 Pt_foil	sample005	Pt-L3	1	Pt-L3	111	т			1	Pt-L3 Pt-L3:20	-330	20	10	1	0	5			
5	- 2	2 Cu_foil	sample006	Cu-K	1	Ou-K	311	т			1	Cu-K Cu-K:20	-330	20	10	1	0	5			
6	30	Ni_foil	sample007	Ni-K	0			Т			1	NHKNHK:20	-330	20	10	1	0	5			
7	31	1 Mo_foil	sample008	Mo-K	1	Mo-K	311	т			1	Mo-K Mo-K:20	-330	20	10	1	0	5			
8	60) Sn_foil	sample009	Sn-K	1	Sn-K	311	т			1	Sn-K Sn-K:20	-330	20	10	1	0	5			
9	31	1 Mo_foil	sample010	Mo-K	1	Mo-K	111	т			1	Mo-K Mo-K:20	-330	20	10	1	0	5			
10	end																	5			
11																		5			

・#:カセットホルダー番号(1~120)、設定ファイルの上から順番に測定が行われる。

・サンプル名:サンプル名(英数アンダーバー文字のみ使用可)

・データ名(.dat): データファイル名(英数アンダーバー文字のみ使用可、拡張子 dat は必要なし)

・測定対象:測定吸収端(Pt-L3、Cu-Kなど)

・光学調整: 0 → 光学調整を行わない。

1 → 調整条件に記入された吸収端で光学調整を行う。

- ・調整条件:光学調整を行う吸収端
- ・結晶面:測定結晶面(111 又は 311、直前と同じ場合は空白)
- ・T/F:透過法の場合はT、蛍光法の場合はFを入力
- ・SSD 調整:0 又は 空白 → 無し
 - $1 \rightarrow 元素指定(slit_priority)$
 - $2 \rightarrow 元素指定(detector only)$
- ・SSD条件 decX/mm: 推奨以外の条件を入れる場合に入力する。
- ・Gain 調整:0 又は 空白 → 調整無し
 - 1 → エネルギー指定(Gain 調整条件で入力した条件で調整を行う。)
 - 2 → ゲイン値を直接指定(Gain 調整条件で入力したゲイン値に設定)

・Gain 調整条件:エネルギー指定の場合

(例 1) Fe-K ··· Fe-K 吸収端のプリエッジにてゲイン調整が行われる。

- (例 2) Fe-K | Fe-K:20 ··· Fe-K 吸収端のプリエッジと高エネルギー側の 波数 20Å⁻¹にてゲイン調整が行われる。
- (例 3) Mn-K|Fe-K|Fe-K:20 · · · Mn-K、Fe-K 吸収端の各プリエッジ、
 - 及び Fe-K 吸収端の高エネルギー側波数 20Å⁻¹にてゲイン調整が行われる。
- ゲイン値を直接指定する場合
- (例)7|8 ・・・ I0のゲインは10⁷ V/A、I1のゲインは10⁸ V/A で設定される。
- ・Preedge/eV: preoffset 値の入力(eV)
- ・Range/A⁻¹: 測定波数範囲(Å⁻¹)
- ・Dwell/msec:積算時間(msec)
- ・繰返回数:測定繰り返し回数
- ・待ち/sec:待ち時間(sec)
- ・slit/mm: 4D スリット幅を入力(0.3-5 mm)
- ・コメント: データファイル(拡張子 dat)内のコメント欄に記入される(英数アンダーバー文 字のみ使用可)
- (4) 測定条件ファイルにパラメータファイルの入力が完了したら、"測定条件アップロード" ボタンを押し、SPEC サーバーに測定条件をアップロードする。
- (5) "XAFS_HummingBird"ダイアログから"連続測定"ボダンを押す。

(6) ログダイアログに測定条件が表示されるので、測定条件が正しいか確認する。良ければ"OK"ボタンを押す。

(7) 連続測定が終了すると、ビームラインの PHS(3724)に測定終了のアラームが通知される。

(8) 連続測定を中断したい場合は MBS を閉じる。現在の測定が終了し、試料が返却された時点で連続測定が中断される。

3. HummingBird 自動測定後

HummingBird 自動測定は下記の手順で元の状態に戻す。

(1) "XAFS_HummingBird"ダイアログから"このウィンドウを閉じる"ボダンを押す。

(2) "XAFS_HB 調整"ダイアログから"このウィンドウを閉じる"ボダンを押す。

- (3) 制御 PC 側からログイン中の SPEC サーバーに"quit"コマンドと入力し、SPEC を終了 する。
- (4) "exit"コマンドを入力し、SPEC サーバーからログアウトする。
- (5) 解析 PC 側から"tail"コマンドを実行している場合は、Crtl+C キーを押して tail を終了 する。
- (6) HummingBird からカセットホルダーを取り外し、サンプルを回収する。
- (7) HummingBird 本体を定盤の下流側に移動する。

以上

Appendix

- I. 測定試料固定用治具
- ・プラスチックマウント(フジカラー、型番:14740、透過測定用)

(左)プラスチックマウント本体、(右)試料を固定した状態

試料ホルダー、カードリッジにセットした状態

・試料ケース(BL14B2所有、透過測定用、50mm角)

(左)試料ケース本体、(右)試料を固定した状態

試料ホルダー、カードリッジにセットした状態

・アルミプレート(BL14B2所有、透過・蛍光測定用、50mm角)

(左) アルミプレート本体、(右)試料を固定した状態

試料ホルダー、カードリッジにセットした状態

(左) アルミプレート本体、(右)試料を固定した状態

試料ホルダー、カードリッジにセットした状態

2. 試料ホルダー(理学相原精機、型番: 3719-0600)

試料ホルダー本体

試料ホルダー図面

3. HummingBird 用カードリッジ(理学相原精機、型番: 3719-0500R1)

カードリッジ本体

カードリッジ図面

II. X線照射位置(X線サイズ:横5mm×縦1mm)

改訂履歴

改訂年月日	改訂者
2023.09.27	大渕 博宣
2025.01.10	大渕 博宣