高密度磁気記録媒体材料の研究と 放射光

朝日 透

早稲田大学 科健機構(ASMeW)生命医療工学研究所 早稲田大学 大学院理工学研究科ナノ理工学専攻

чина на 1.881-77-2.877-7 накостаці зореце Макостаці дореце

◆40ギガバイトの容量で本体の厚さを5mmに抑えた1.8型磁気ディスクを2005年度4月 -6月期、本体の厚さを8mmで80ギガバイト仕様を2005年度7月-9月期から量産開始。

◆垂直磁気記録方式を採用することで、世界最高面記録密度133ギガビット/平方インチ を実現。

◆世界初の垂直磁気記録用ヘッドとディスクを搭載のハードディスクであり、垂直記録の性能を十分に引き出すためのヘッド・ディスク統合設計技術により安定した高密度記録を実現。

垂直磁気記録方式

A double-layered perpendicular magnetic recording medium which consists of a perpendicular magnetization film with strong magnetic anisotropy and a soft magnetic underlayer (SUL) is a promising magnetic recording medium for realizing an ultra high recording density.

Co/Pd垂直磁気記録媒体の軟X線MCDの研究

SPring8/BL23SU

APPLE2-type undulator E/ΔE > 7000 の分解能 TY mode による測定

TABLE I. Magnetic properties of [Co/Pd]₂₀ films with various seedlayers.

Film	Thickness (nm)	Seedlayer & Thickness (nm)	M_s (emu/cm ³)	H _c (kOe)	α(-)	K_u (erg/cm ³)
А	20	C (5)	410	2.1	11.9	4.6
В	20	C (30)	390	4.6	9.9	4.2
С	20	C (60)	390	4.3	5.6	4.1
D	20	Si (5)	420	2.5	10.5	5.7
Е	20	Si (30)	380	6.5	4.7	4.2
F	20	Si (100)	340	5.7	2.2	2.9
G	20	Pd(3)/Si (100)	360	7.1	2.9	4.3
Н	10	Si (100)	250	2.8	2.0	2.3
Ι	10	Pd(3)/Si (100)	280	5.5	2.4	4.0

A. Agui, M. Mizumaki and T. Matsushita, T. Asahi, J. Kawaji, J. Sayama and T. Osaka, J. Appl. Phys. 95, 7825 (2004).

謝 辞

本講演は文部科学省21COEプログラム「実践的ナノ化学教育研究拠点」、 科学技術振興調整費 先導的研究等の推進「ナノ界面制御による磁気記録材 料の創製」、科学技術振興調整費 戦略的研究拠点育成「先端科学と健康医 療の融合研究拠点の形成」の援助を受けて行われた研究であり、 その一部はSPring8 課題番号2002B0642-NS1-np「[Co/Pd] ならびに [CoB/Pd] 垂直磁化多層膜を用いた垂直二層膜磁気記録媒体の軟X 線磁気 円二色性の研究」において実施された研究成果である。 共同研究者の原研 安居院あかね氏、JASRI 水牧仁一朗氏、松下智裕氏、 早稲田大学 逢坂哲彌教授、田中真人助手、川治純氏、佐山淳一氏の有意義 な議論と多大な研究協力に感謝する。