貴金属–遷移金属合金および交換結合二層膜の XMCDによる検討

加藤剛志 (名古屋大学)

水野俊也,藤原裕司*, T. Eimüller, 綱島滋, P. Fischer, 岩田聡 名古屋大学, *三重大学, **Max-Plank-Institute

Background

光磁気記録媒体:

- ・希土類遷移金属アモルファス合金(TbFeCo)
 - 垂直磁気異方性 $K_u \sim 10^6$ erg/cc Kerr回転角 $\theta_K \sim 0.3$ deg at 650 nm 媒体の均一性 適度なCurie点 ~ 250 °C 生産性,経済性 等々
- ・貴金属-遷移金属系材料(Co/Pt多層膜)
 垂直磁気異方性 K_u~10⁷ erg/cc
 Kerr回転角 θ_K~0.6 deg at 400 nm
 多結晶膜, Curie温度などに問題

2004 12.16 SPring-8ワークショップ<放射光による磁気材料評価技術> 千里ライフサイエンスセンター

MnPt₃, CrPt₃ *M*(emu / cc) MnPt₃, CrPt₃規則合金膜 500 MnPt₃ -1 eV付近で大きな θ_K - 石英ガラス上のCrPt₃で大きなK_u -20 // 0.5 -500 Kerr rotation $\theta_{ m K}$ (deg) 0 500 CrPt₃ CrPt₃ -0.5

20

H(kOe)

TM-Pt₃規則合金膜の理解

TM-Pt₃

研究例の少ないMnPt₃, CrPt₃, VPt₃の磁気異方性,磁気光学特性,磁気円二色性

バルクTM-Pt₃規則合金の構造と磁性

Material	Prototype	Magnetism	$T_{\rm C}^{\rm / }/T_{\rm N}^{\rm (K)}$	μ at 0 K (μ _B)
VPt ₃	Cu ₃ Au	ferri	240	$\mu_V \approx 1, \mu_{Pt} \approx -0.3$
	TiAl ₃	ferri	210	$\mu_V \approx 1, \mu_{Pt} \approx -0.3$
CrPt ₃	Cu ₃ Au	ferri	690	$\mu_{Cr} = 2.3, \mu_{Pt} = -0.3$
MnPt ₃	Cu ₃ Au	ferro	370	$\mu_{Mn} = 3.6, \mu_{Pt} = 0.3$
FePt ₃	Cu ₃ Au	anti-ferro	170	$\mu_{Fe} \approx 3.3, \mu_{Pt} < 0.3$
CoPt ₃	Cu ₃ Au	ferro	290	_

近角ら(偏):磁性体ハンドブック

R. Jesser et al.: J. de Phys. 42 (1981) 1157.

Sample Preparation

XRD patterns

2004 12.16 SPring-8ワークショップ<放射光による磁気材料評価技術> 千里ライフサイエンスセンター

Uniaxial anisotropy

3

electron number of TM atoms

$$2\pi M_{s}^{2}: MnPt_{3} > CrPt_{3} > VPt_{3}$$
$$K_{u}: CrPt_{3} > VPt_{3} > MnPt_{3}$$
$$VPt_{3}: \mathbb{E}?$$

Vモーメントは寄与している?

Kerr spectra

2004 12.16 SPring-8ワークショップ<放射光による磁気材料評価技術> 千里ライフサイエンスセンター

MCD spectra

 $(Mn_{1-x}Cr_x)Pt_3$ 規則合金膜

MCD spectra

 $(Mn_{1-x}Cr_x)Pt_3$ 規則合金膜

CrとMnモーメントの平行カップリング

MCD spectra

Vモーメントの強磁性的寄与

CrとVモーメントの平行カップリング

Sample	Saturation	Uniaxial anisotropy	isotropy MCD contrast		rast	Corrected		
	magnetization	constant	at L_3			$< L_{z} > / 2 < S_{z} >$		z >
	$M_{\rm s}\left({ m T} ight)$	$K_{\rm u} (\times 10^5 {\rm J}/{\rm m}^3)$	Mn	Cr	V	Mn	Cr	V
MnPt ₃	0.56	-0.5	0.53	_	_	0.02	_	
$Mn_{0.45}Cr_{0.55}Pt_3$	0.34	0.5	0.40	0.29	_	0.05	0.18	-
$Mn_{0.23}Cr_{0.77}Pt_3$	0.32	1.8	0.40	0.40	-	0.03	0.15	-
$Mn_{0.07}Cr_{0.93}Pt_{3}$	0.31	2.1	0.40	0.42	_	0.03	0.15	-
CrPt ₃	0.30	2.4	_	0.40	_	_	0.15	-
$Cr_{0.56}V_{0.44}Pt_3$	0.24	0.7	_	0.30	0.11		0.12	0.06

Correction factor

Mn: 0.78, Cr: 0.59, V: 0.40

Y. Teramura et al.: J. Phys. Soc. Jpn., 65 (1996) 1053.

MBE-grown TM-Pt₃

MBE法

成長中真空度	< 2 x 10 ⁻⁷ Pa
TM-Pt ₃ 層	600 nm
(TM: Mn, Cr)	(TMとPtの同時蒸着)
基板温度	600 °C
基板	石英ガラス, MgO, Al ₂ O ₃

RHEED observation:

CrPt₃ / MgO(111)

e⁻ beam // <101>

MBE grown CrPt₃

 2004 12.16
 SPring-8ワークショップ<放射光による磁気材料評価技術>

 千里ライフサイエンスセンター

MCD of MBE grown CrPt₃

 $K_{\rm u} \& < L_z > / 2 < S_z >$

 $K_{\rm III}$ & lattice distortion

 2004 12.16
 SPring-8ワークショップ<放射光による磁気材料評価技術>

 千里ライフサイエンスセンター

Background

強磁性/反強磁性界面の交換結合 SVヘッド,MRAMにおいて重要な役割

交換結合のメカニズム

Random field model Spin flop coupling

A. P. Malozemoff: Phys. Rev. B 35 (1987) 3639.

N. C. Koon: Phys. Rev. Lett., 78 (1997) 4865. T. C. Schulthess *et al.*: Phys. Rev. Lett., 81 (1998) 4516.

メカニズムの理解は不十分

微細加工CoFeB/MnIr交換結合膜

XMCD-PEEMCo L_3 edgeFe L_3 edgeMn L_3 edge

CoFeB/MnIrの界面での磁気結合状態を評価

Sample Preparation

RFマグネトロンス	パッタ
到達真空度	< 2 x 10 ⁻⁵ Pa
Ar圧	0.4 ~ 2 Pa
成膜中磁場	100 Oe

真空中熱処理

真空度	< 1 x 10 ⁻⁴ Pa
温度・時間	250 °C, 30 min
印可磁場	850 Oe

3 nmCo_{86}Fe_{10}B_410 nmMnIr10 nmNiFe10 nmSiNSi substrate

FIB加工

一次イオン 22 keV Ga⁺
ビーム電流 30 pA
ビーム径 50 nm

2004 12.16 SPring-8ワークショップ<放射光による磁気材料評価技術> 千里ライフサイエンスセンター

MH of sheet films

after heat treatment at 250 °C

as-deposited

FIB fabricated CoFeB/MnIr

CoFeB (3 nm) / MnIr (10 nm) / NiFe (10 nm) / SiN (10 nm) / Si

etching depth ~ 18 nm

MCD-PEEM at Mn and Co edges

square shaped CoFeB (3 nm) / MnIr (10 nm)

300 nm程度の不規則な磁区 界面でMnの強磁性的配列 MnとCoの反平行結合

Mn MCD spectrum

 2004 12.16
 SPring-8ワークショップ<放射光による磁気材料評価技術>

 千里ライフサイエンスセンター

Summary

TM-Pt₃規則合金(TM = Mn, Cr, V)

- 1. 垂直磁気異方性: CrPt₃ > VPt₃ > MnPt₃
- 2. $< L_z > / 2 < S_z > : CrPt_3 > VPt_3 > MnPt_3$

(Mn, Cr, Vのモーメントは全て平行に結合)

3. K_uは熱処理により誘導された格子ひずみと<L₂>/2<S₂>で良く説明される.

CoFeB/MnIr交換結合膜

- 1. 300 nm程度の不規則な磁区構造(MnIrのランダムな結晶異方性?)
- 2. 界面での強磁性的Mnスピンの存在(界面でのMnスピン再配列)
- 3. MnとCoの反平行カップリング