硬X線光電子分光法による スピンエレクトロニクス材料の研究

小林啓介

財団法人 高輝度光科学研究センター ナノテクノロジー総合支援プロジェクト推進室

ワイドギャップ希薄磁性半導体 Ga_{1-x}Cr_xN への応用

- 1. 価電子帯スペクトル ---- 光電子スペクトルにギャップ内 状態
- 2. LDA第一原理計算との比較 ---- 光電子スペクトルに現 れたギャップ内状態はGa4s成分が主
- 3. N 1s および Ga 2p 内殻スペクトル ---- Cr-N および Cr-Ga が混成している。

東北大学、および高知工科大学との共同研究

J. J. Kim et al. Pys. Rev B 70, 16615(R) (2004)

理論計算とのフィッティング ~ CI- Cluster Model Calculation ~						
Initial state $2p {}^{6}3d {}^{4}C$ Midgap (C) state $20nm$ Mn $2p_{3/2}$	Т	<i>V</i> *	Δ^*			
	/K	/eV	/eV			
O-2p A* Mn-3d	28	0.4	0.8			
	100	0.38	0.8			
$\Delta = 4.5 \text{ eV}$	160	0.37	0.8			
$V_{pd} = 2.94 \text{ eV}$	180	0.35	0.8			
10Dq = 1.5 eV	200	0.34	0.8			
Mn-2p	220	0.34	0.8			
Mn 3d とギャップ内のコヒーレン	240	0.33	0.8			
ト状態との混成の強さつまり、	260	0.32	0.8			
歴性の大きさ、を現す。	280	0.29	1.0			
終状態 2p ⁵ 3d ⁵ C サテライト:非局所スクリ	300	0.25	1.1			
	320	0.24	1.2			
$V^* \propto \sqrt{D(E_F)}$ (O. Gunnarsson <i>et al.</i>) Binding Energy (eV)	į					

結論2					
様々な膜厚の (hv=6 keV、)歪み (La _{0.85} Ba _{0.15})Mn 10 keV Mn-2p _{3/2}) を用い	O ₃ 薄膜をバルク敏感な 内殻 いて調べた。	えペクトル		
(1)温度依存性 (20nm thickness film)					
低エネルギーサテライトの強度の温度依存性は磁化の平方根に比例し、2重交 換相互作用による強磁性のモデルを支持する。					
(2) 膜厚依存性					
薄膜の厚さを 300nm (T _c : 282K) から20nm (T _c : 299K)に小さくすると					
Γ	Satellite intensity	Main peak energy			
	Enhanced	Constant			
このHX-PES の結果は歪みによる電子状態の変化が強磁性転移温度の上昇の 原因であるとするシナリオを支持する。酸素のオーバードーピングによるとするシ ナリオはには合わない。この結果はホール測定の結果とも一致する。					
(3) 表面処理	を必要としないex-sit	u 測定が可能			
バルク敏感 プロセスが4	な HX-PES はポストアニ- 장要なデバイス構造の試料	ーリング、リソグラフィー, 電極形 料での測定が可能と期待される	成などの !!		

まとめ

●SPring-8の高輝度アンジュレーター光を利用したHX-PES は試料表面に煩わされることなく高分解能で価電子帯およ び内殻スペクトルを測定することが出来、その定量解析が 可能である。

●HX-PES は薄膜電子材料の電子状態および化学結合状態の評価、解析に不可欠な手法である。

●現在SPring-8ではこのHX-PESを10keV励起まで可能に なった。この方法は2004年度からナノテクノロジー総合支 援課題を受け入れている。さらに応用分野を広げるために、 新しい物質や材料への応用を試みる一方、顕微分光などの 新しい手法の開発を続けている。

課題申請を考えられる方は小林(koba_kei@spring8.or.jp)に御相談下さい。