

2005年9月16日 SPring-8 ワークショップ

次世代TFT研究における放射光利用

(株)液晶先端技術開発センター

東 和文

共同実験者および協力者(敬称略)

本研究は、経済産業省の資金を基に、(株)液晶先端技術開発センターが受託したNEDOの課題設定型産業 技術開発費助成金「エネルギー使用合理化液晶デバイス・プロセス研究開発」に関するものである。

アウトライン

大粒径Siの低温形成とTFTへの応用 ゲート絶縁膜形成とその界面構造評価 Si/ゲート酸化膜界面構造評価(Sub-Oxide) 極薄酸化膜の均一性評価 まとめ

ALTEDECの概要

名称	(株)液晶先端技術開発センター		
Advanced	LCD Technologies Development Center Co., Ltd.	(略称	ALTEDEC)
所在地	神奈川県横浜市戸塚区吉田町292番地		
設立	2001年1月		
資本金	11億9150万円(2003年10月)		

株主構成								
シャープ(株)	東芝松下ディスプレイテクノロジー(株)							
日本電気(株)	(株)日立ディスプレイズ							
(株)東芝	松下電器産業(株)							
大日本印刷(株)、	(株)島津製作所 計8社							

主な研究開発テーマ(2001年6月~2005年3月)

- 1. 高性能アクティブマトリックス液晶ディスプレイを実現する、
 - 省エネルギー生産プロセス基盤技術の研究開発
- 2. 先進的液晶ディスプレイを実現する、次世代技術の研究開発
- 3.液晶ディスプレイ材料及び製造装置の研究開発

Platform Technologies for Active Matrix Displays

___A TEDEC__

位相変調エキシマレーザアニール法 (PMELA)

位置制御されたSiの配列 - ホームベース型結晶粒 -

SEM像 (セコエッチング後)

EBSP*による結晶粒配置図

*Electron Back Scattering Pattern

V_{gs} - I_{ds} 特性とチャネル形成位置(ドレイン端)の相関

Gate Voltage[V]

	N型TFT		P型TFT			
ドレイン端位置	Vt [V]	µFE [cm2/V∙s]	S [V/dec]	Vt [V]	µFE [cm2/V∙s]	S [V/dec]
①成長開始領域	3.71	13.1	1.05	-3.31	3.16	1.50
②大結晶粒領域	-0.27	712.4	0.15	-1.47	138.8	0.11
③成長終了領域	1.13	46.0	0.33	-2.69	44.7	0.42

アウトライン

大粒径Siの低温形成とTFTへの応用 ゲート絶縁膜形成とその界面構造評価 Si/ゲート酸化膜界面構造評価(Sub-Oxide) 極薄酸化膜の均一性評価 まとめ

積層ゲート絶縁膜低温形成技術

スロット導波管(SWP)方式マイクロ波装置(酸化/成膜)

Experimental Conditions

- •Frequency : 2.45 GHz
- •Gas : O₂, Kr, Ar, TEOS
- •Pressure: 40-80 Pa
- •Power : 600-2400 W
- Ts : 100-350°C

Plasma Diagnostics

- Actinometry
- Appearance Mass
 - Spectrometry
- Langmuir probe

ラジカル酸化の特長

5 nm

表面波プラズマ酸化膜厚のSi面方位依存性

SiO₂厚さ=4.8 nm

SWP方式表面波プラズマ酸化

*(Kr + 3%O2): [左右の図では形成時間が異なる]

SiO₂厚さ=8.0nm

ELA結晶の粒界部断面

単結晶(001)の(110)断面

▶ 酸素ラジカル酸化により、Si面方位に拠らず同一の酸化膜厚が得られる。

アウトライン

 大粒径Siの低温形成とTFTへの応用
ゲート絶縁膜形成とその界面構造評価
Si/ゲート酸化膜界面構造評価(Sub-Oxide) 極薄酸化膜の均一性評価
まとめ

10¹⁰

0

光電子分光法による 酸化膜厚と界面準位密度 μ 波PECVD膜界面構造評価 μ波PECVD単層膜での界面準位密度が低い。 押込み酸化膜の場合と界面構造を比較。 成膜初期に自発的酸化反応? 【評価用試料】 10¹² Interface States Density $(cm^{-2} eV^{-1})$ μ− Wave PECVD μ波酸化 μ**波**PECVD 膜厚 VHF-PECVD \bigcirc Kr 97% /O₂ 3% TEOS 3% /O2 97% PECVD(30nm) $Oxide(Kr/O_2 plasma)$ 2.0kW. 133Pa 2.4 kW. 80 Pa 4.88 nm 2 nm Si(100) subst 3 nm 10¹¹ TEOS 3% /O₂ 97% 5.19 nm 2.4 kW, 80 Pa 00

4

Oxide thickness(nm)

3

2

 \bigcirc

 \bigcirc

R

21 =

4.92 nm

4.97 nm

5 nm

サブオキサイド領域の拡大図

Arプラズマ照射によるSub-oxide領域の変化

23 =

Kr/O₂プラズマ酸化膜/Si界面構造の面方位依存性

アウトライン

■ 大粒径Siの低温形成とTFTへの応用

■ ゲート絶縁膜形成とその界面構造評価

Si/ゲート酸化膜界面構造評価(Sub-Oxide)

▶ 極薄酸化膜の均一性評価

■ まとめ

種々の酸化膜のO1s光電子損失スペクトル

まとめ

- ☆ ラジカル酸化によるSi/SiO₂界面は熱酸化の場合よりも原子レベルで平坦である が、その界面付近の構造遷移層の評価には高輝度光を用いたXPSの手法が有 効である。
- ☆ 高輝度光を用いたXPSではSi 2pスペクトルからサブオキサイドの評価が容易である。これにより

・酸化法による界面急峻性の違いの有無が明確になる。

・プラズマ損傷の程度を定性的に評価できる。

☆ 高輝度光を用いたO1s 光電子損失スペクトルから酸化膜の均一性を評価できる。