

次世代MRAMにおける磁性材料

(株)東芝 岸

與田,甲斐,永瀬,北川,吉川,西山,大坊,長嶺,天野,高橋,中山,下村, 相川,池川,土田,岩田,浅尾 *湯浅,*薬師寺,*久保田,*福島 **大兼,**安藤,**水上 ***鈴木 **宮崎,*安藤 (株)東芝

*産総研、**東北大、**大阪大

Copyright 2006, Toshiba Corporation.

- ・ MRAMとは
- ・スピン注入の原理
- ・ 垂直磁化方式MRAM
- 課題
- ・まとめ

謝辞

本研究の一部はNEDOの委託により行われた

フリー百科事典『ウィキペディア(Wikipedia)』

磁気抵抗メモリ(じきていこうメモリ、英:*Magnetoresistive Random Access Memory*)とは磁気を利用した記憶素子で、Magnestic Random Access Memory、MRAMとも呼ばれる。N-Sという磁力極性を利用した記 憶媒体(<u>磁気ディスク装置や磁気テープ</u>装置など)ではなく、<u>電子のスピン</u>を <u>メモリ</u>素子として利用する<u>スピントロニクス</u>を採用している。

動作原理

- 読み出し
 - TMR(Tunnel Magnetoresistance, トンネル磁気抵抗)効果
- 書き込み
 - 電流磁場方式
 - スピン注入方式

MRAM構造

MR4A16B

Everspin Technologies のWebより

メモリアレイ

トランジスタ

MRAM**の特徴**

- ・不揮発
 - 磁性体に記憶する 🔘
- 高速
 - 磁化反転は nsecオーダー 🧿
- ・大容量
 - 超常磁性限界まで(10nm程度以下) 🔘
- ・スケーラビリティ
 - 電流磁場方式
 - 小さくなると反転電流増大 ×
 - スピン注入方式
 - 原理的にサイズが小さくなると反転電流減少 🔘

⇒DRAMの置き換えが可能(+不揮発)

- ・ MRAMとは
- ・スピン注入の原理
- ・ 垂直磁化方式MRAM
- 課題
- ・まとめ

垂直方式 VS 面内方式

Perpendicular

$$I_C^{APtoP} = \frac{e}{\hbar} \frac{\alpha}{g(0)} \times 2k_B T \Delta$$

$$I_{C}^{APtoP} = \frac{e}{\hbar} \frac{\alpha}{g(0)} \times 2k_{B}T \left(\Delta + 2\pi M_{s}^{2}V \right)$$

シミュレーション(低電流書き込み)

垂直磁化方式が低電流化に有利

H.Yoda, et al., 7th IWFIPT (2007)

シミュレーション(スケーラビリティ)

垂直方式におけるスケーラビリティの理論的証拠

- ・ MRAMとは
- ・スピン注入の原理
- 垂直磁化方式MRAM
- 課題
- ・まとめ

実験結果(GMR)

History of perpendicular system, 1st Stage Demonstration of spin torque transfer switching

垂直方式GMR系におけるスピン注入の実証 (ただし反転電流が大きい)

実験結果(垂直方式MTJ-1)

TbCoFeを用いたMTJ(Magnetic Tunnel Junction) におけるスピン注入の実証

M.Nakayama, et al., MMM(2007); JAP

実験結果(垂直方式MTJ-1)

垂直方式におけるスピン注入反転電流の低減を実証

T.Nagase, K.Nishiyama, et al., APS 2008

実験結果(垂直方式MTJ-3)

垂直方式におけるスピン注入反転電流低減のポテンシャルを実証

Ic(AP-P)~49 μA

スピン注入反転効率

- ・ 定義
 - 反転電流

$$I_{C}^{APtoP} = \frac{e}{\hbar} \frac{\alpha}{g(0)} \times 2k_{B}T \Delta_{therm}$$

反転効率:
$$I_C^{APtoP} / \Delta_{therm} \propto \frac{\alpha}{g(0)}$$

α:減衰定数g(θ):MRに依存した因子

スピン注入反転効率

• 垂直方式の効率が面内方式より高い

垂 直 方 式 ス ピ ン 注 入 MRAM の ま と め

Conferences	Previous works	7 th IWFIPT	MMM2007	APS 2008	Intermag08 & ECS2008	IEDM 2008
MTJ structure	• GMR	• Spin transfer demonstration in perpendicular MTJs	• TbCoFe TMR	• Artificial TMR	• MTJ array	• MTJ array
	storage Cu or Au Reference layer	() () () () () () () () () ()	TbCoFe storage MgO barrier Reference layer	multilayer MgO barrier Reference layer		
Switching Current or density	J _{cAP-P} = 26-100 MA/cm ²		J _{cAP-P} = 3.5MA/cm ²	J _{cAP-P} =2.7MA/cm ²	Array demonstration with 50nm MTJs	Ic=49 μA
Switching speed	No data				10 nsec	4 nsec

