SPring-8 利用推進協議会 金属材料評価研究会 -第2回:イメージング観察の新手法-2010, 03, 01 ゆうぽうと(東京・五反田)

高エネルギーX線によるステンレス鋼 溶接部のSCCき裂観察

- 試験片寸法拡大の検討 -

(財)発電設備打	支術検査協会	〇中東重雄	長谷川忠之
兵庫県立大学	工学研究科 工学部	藤城智之 坂本諭志	山本厚之 大菅祥平
兵庫県立大学高度産業科学技術研究所		寺澤倫孝	
SPring-8/JASRI		梶原堅太郎	伊藤真義

1

<u>財団法人 発電設備技術検査協会(本部·東京港区)</u>

- 溶接・非破壊検査技術センター(横浜市・鶴見区)
- 西日本支部(大阪市・北区)
- 設立: 昭和45(1970)年6月
- 趣旨 : 発電設備等の品質の維持・向上及びこれらに係わる技術の進歩、発展 を図り、人命及び財産の安全の確保に寄与するとともに、電気事業及び 電機工業の健全な発展に資することを目的とする

主な事業内容

- 溶接・非破壊検査分野における審査・検査
- 溶接・非破壊検査分野における先端的な試験研究
- 国の規制や民間の自主保安活動に対し、技術や制度の両面にわたって 社会に貢献する
- アカデミー(UT規格におけるUT講義と実習、RT、MT、PT、材料研修等),

<u>超音波探傷検査風景</u>

【超音波探触子】

【超音波探傷器】

<u>垂直探触子の場合の欠陥信号例</u>

超音波探傷試験の課題

4. 粗粒金属内の欠陥検出

目的

● ステンレス鋼粒界型SCCのき裂進展経路の要因 * き裂進展粒界の3次元的結晶方位関係の把握

1. 超音波探傷シミュレーションモデルの構築と 高度化

2. 超音波探傷試験のサイジング精度の評価

切断試験により深さを測定(細断により精度向上)

37keV放射光によるCTイメージング

- 実用鋼中のSCCき裂の3次元形状と分布の観察 の可能性の検討
 - 試験体材料 1.
 - Ni基合金溶接金属中SCC
 - ステンレス鋼SCC(IGSCC/TGSCC) ステンレス鋼母材/溶接金属への貫通SCC
 - 2. 試験体の大きさ φ1 mm ~ φ2mm
 φ2mm
 - 3. CTイメージング測定条件の決定

CTイメージング測定装置

BL19B2ビームライン H-1ハッチ

測定用試料の光学顕微鏡によるミクロ組織

Ni基合金溶接金属内SCC

SUS316L鋼TGSCC

SUS316L鋼IGSCC

SUS304鋼溶接金属内SCC

<u>CTイメージング測定条件【1】</u>

	IGSCC/TGSCC 母材/溶接金属等
ビームライン	BL19B2
SR光エネルギー	37 keV
ビーム照射範囲	2.7 × 2.7 mm
カメラ長	300 mm
実効ピクセルサイズ	2.9µm
撮影条件	0 — 180°
撮影ピッチ	0. 2°
露光時間	0.2 秒
像再生法	Filtered Back Projection 法 (Image-J)

<u>ステンレス鋼中のSCCき裂</u>

37keV放射光によるCTイメージングの結果

- 実用鋼(Ni基合金/ステンレス鋼)の代表的なSCC き裂の3次元形状と分布をはじめて観察
- 2. SCCき裂の形状の分類・パターン化、き裂進展挙動の 特徴を得た
- 3. 観察可能な限界き裂幅の目安が得られた
- 4. き裂の実観察結果情報をUTシミュレーションへ反映。 UTシミュレーションモデルの高精度化が図れた

<u>超音波探傷計算機シミュレーションモデルの検証</u>

<u>CTイメージング測定条件【2】</u>

	IGSCC/TGSCC 母材/溶接金属等	ϕ 10~5mm SUS試料等	
ビームライン	BL19B2	BL08W	
SR光エネルギー	37 keV	115keV	
ビーム照射範囲	2.7 × 2.7 mm	4. 5×12 mm	
カメラ長	300 mm	606 mm	
実効ピクセルサイズ	2.9µm	2.9 µm	
撮影条件	0 – 180°		
撮影ピッチ	0. 2°	2°	
露出時間	0.2 秒	8 秒	
像再生法	Filtered Back Projection 法		

<u>115keV CTイメージング測定用試料</u>

Ф~10mm			<u>作製</u>	<u>した=SCC</u>	式 <u>料</u>
	15mm			TGSCC (粒内型)	IGSCC (粒界型)
SCCき裂		Φ	5	0	Ο
		Φ	8	0	0
		Φ.	10	0	

<u>115keV放射光CTイメージングの結果</u>

- 現場で使用されている超音波探触子の最低サイズは、 検体接触面が10mm角である。
 従って本法は、UTシミュレーションの検証法として有効 な手法であることがわかった
- IGSCCき裂幅は、TGSCCき裂幅より大きいことから、 Φ10mm試料中のIGSCCき裂の観察も可能と推測される

25

<u>今後の課題</u>

- 1. CTイメージングによるき裂長さの精度評価
- 2. 空隙(き裂)の観察可能限界値の評価
- き裂面の性状評価
 き裂面の粗さ、析出物の有無等
- 4. き裂粒界の3次元結晶方位関係の測定

本成果は、SPring-8の産業利用BL19B2ビームライン および共用ビームラインBL08Wビームラインを利用して 得られた成果である。

課題番号	2009B1369(2009年下期)
課題番号	2009A1259(2009年上期)
課題番号	2008B2078(2008年下期)
課題番号	2008A1901(2008年上期)
課題番号	2007B1941(2007年下期)
課題番号	2006B0215(2006年下期)
	課題番号 課題番号 課題番号 課題番号 課題番号 課題番号