

X線反射率法を用いたパターン媒体の 加工ダメージ評価

(株)東芝 研究開発センター 喜々津 哲

Copyright 2006, Toshiba Corporation.

パターンド媒体のコンセプト

R. White: IEEE Trans. Magn., 33 p.990 (1997)

Nakatani: Japanese Pat. (1989)

CoCrPt/パターンド媒体

Co74Cr6Pt20パターンド媒体(80 nmピッチ、40 nm直径)

MFMを使ったドット毎の磁気特性測定

J.Bai et al., J. Appl. Phys., Vol.96, No.2, 1133(2004).

各ドットの保磁力分布

Hc distribution of aligned CoCrPt dots $(40 \text{nm}\phi)$

Y. Kamata: Intermag 06 GE-09

ドットの均一性:数本の粒界、異方性軸分布

磁性膜の平均粒径: 22.9 nm パターンサイズ: 40 nm ドット中に粒界が1-2個

垂直配向軸のばらつき、

磁気特性分布の原因

possible origin of the distribution

- >dot size distribution
- microscopic composition dispersion
- ➢ grain boundary
- >damage by the etching process
 - ... TEM, simulation: little damage by ion milling

Back sputtering

11

 $\times 100,000$

100n

introduction (II)

motivation:

etching damage analysis of the patterned media made by ion milling process with self assembled mask

 magnetic layer: Co/Pt multilayer magnetic properties by multilayer structure
 sensitive to the physical damage

method: Grazing Incidence X-ray Reflectivity (GIXR)

layer structure, roughness

similar refraction is expected; multilayer: reduced intensity underlayer: increased intensity dot edge: scattering

experiment - measurement

- ➤ saturation magnetization (Ms): VSM
- > magnetic anisotropy energy (Ku): VSM, torque meter
- Crystalline structure: XRD
- thickness and roughness: GIXR
- ➤ microstructure: TEM

Fitting model; roughness

rough interface → gradual density change: (z) (z): error function

$$\rho(z) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{z} \exp(-\frac{t^2}{2\sigma^2}) \cdot dt$$

: roughness

experiment – fabrication process

Co/Pt multilayer sample

magnetic properties

little damage to the magnetic properties

- reduction in M_s: proportional to the packing density
- K_u (by torque curve amplitude): no change

crystal properties (XRD: θ -2 θ)

 $\geq \Delta \theta_{50}$: little change throughout the etching process

 $\geq \theta$ -2 θ : - reduced intensity by volume reduction

- before etching: satellite peak from multilayer structure
- after etching: no satellite peak -> damage?

X-ray reflection profile

fitting results

	Nominal thickness (nm)	Fitting thickness (nm)	Roughness (nm)
Top Pt	0.9	0.90	0.90
[Co/Pt] ₂₀	0.3/0.9	0.37/0.90	0.45/0.90
Та	8.0	7.45	0.50
Glass Sub.			0.5

- good agreement with nominal thickness

- roughness ~1nm at [Co/Pt] and top

		Nominal thickness (nm)	Fitting thickness (nm)	Roughness (nm)
	Top Pt	0.9	0.80	3.80
	[Co/Pt] ₂₀	0.3/0.9	0.38/0.80	0.45/0.90
	Та	8.0	7.40	0.55
	Glass Sub.			0.5

little change in ML structure (roughness)
large roughness at the top Pt layer

origin of the large surface roughness

chipped dots but smooth ML structure

little change in magnetic properties

CoPt合金の例:サイドダメージは少ない

for further precise estimation

Issue: strong reflection from the etched-out region

difference in reflectivity of underlayer between etch-out region and dot region

➔ Analytical estimation is difficult.

Summation of two spectra (or subtraction) could work well.

Grazing Incidence X-ray reflection method for etching damage analysis of BPM

Co/Pt multilayer patterned media: large surface roughness with smooth ML structure chipping by the over-etching condition smooth ML \IGTRiver little damage of magnetic properties

ion milling process causes less damage

issues for precise estimation ;strong reflection from reside underlayer

