SPring-8利用推進協議会 先端磁性材料研究会 第3回研究会 「パターン媒体の先端技術開発とナノ磁気イメージングからのアプローチ」 2010年3月16日

顕微XMCD法によるパターン媒体の 磁気特性評価

<u>近藤 祐治</u> , 千葉 隆, 田口 香, 有明 順	秋田県産業技術総合研究センター
本多 直樹	東北工業大学
鈴木 基寛,河村 直己,高垣 昌史	高輝度光科学研究センター/SPring-8
B. M. Zulfakri, 保坂 純男	群馬大学
長谷川 崇,石尾俊二	秋田大学

HDDの面記録密度ロードマップ

ビットパターン媒体(BPM)記録

款田県産業技術総合研究センター

BPMの研究開発の現状

目的

ビットパターン媒体の設計指針の構築

- ◆作製プロセス技術開発
 - 低ダメージプロセスの提案
 - 本プロセスの有効性の確認(ダメージの低減)

◆1 Tbit/in²級ドットアレイの作製

O 磁気特性評価(SFD解析)

micro-XMCD(顕微磁気円二色性)による磁気特性評価

高感度微小磁力計

款田県産業技術総合研究センター

X線ビーム径

FIB (Focused Ion Beam) 加工によるBPM作製

FIB加工によるBPMの磁気評価

 $XMCD: \Delta I(E,H) = I^{-}(E,H) - I^{+}(E,H) \propto M \cos \theta$

※通常の磁気測定と符号が同じになるように、通常のXMCDの定義と逆になっていることに注意

飽和磁化減少検証モデル

Gaエッチングにより作製した磁性ドットは以下の二つの領域から成ると仮定 1. ドット中央部 (D_{center}) → M_{center} = M_{film} 2. ドット周辺部 (D_{edge}) → M_{edge} = 0

Akita A&D Center

1 Tbit/in²級BPM作製プロセス

款田県産業技術総合研究センター

低エネルギーAr⁺エッチングによるBPM作製

パターニングプロセス: 電子線描画 + Arイオンミリング

プロセス 2: EBレジストのパターニング **プロセス 3:** Arイオンミリングによる 磁性膜へのドット転写

エッチング前後のドット形状

載田県産業技術総合研究センター

磁化曲線のドット径依存性

2007B重点ナノテクノロジー支援課題の実験結果

低エネルギーAr⁺エッチングFIBの比較

低エネルギーイオンによるエッチングでは、磁性ドットの磁気ダメージを低減できる

保磁力のドット径依存性

マイクロマグネティクスシミュレーション 計算パラーメータ

t=20 nm M_s =800 emu/cm³ $<H_k>=8.0 \text{ kOe}$ $\sigma H_k=15 \%$ $\sigma \theta$ =3 deg. spacing: 100 nm

Belleらの研究 (B. D. Belle et al., J. Appl. Phys., 107, 09F517-1 (2007)) ・Co/Ptドット ・エッチング条件 : イオンエネルギー2 keV

ドット径が小さくなるにつれて, 抗磁力は増大(計算結果と一致) → エッチングによる垂直磁気異方性エネルギーの低下も少ない

載田県産業技術総合研究センター

1 Tbit/in²級磁性ドットのSEM像

MFM像

AC消磁状態でのMFM像

個々のドットに対応した磁気信号を確認 → 磁気的に孤立

RRDC Akita A&D Center

30 nmピッチドットアレイの磁気特性評価

まとめ

◆作製プロセス技術開発

O高エネルギーGaイオンエッチング

- ・ドット径とともにXMCD強度が減少
- ・モデル解析の結果,ドット外周部に13 nm程度の領域で磁化を消失
- ・ モンテカルロシミュレーション解析の結果, 11 nmのイオン打ち込みがある

磁気的ダメージを低減するためには 低エネルギーイオンの利用が有効

O低エネルギーArイオンエッチング

- ・ドット径に依存せずXMCD強度がほぼ一定
- ・ 高エネルギーGaイオンにより作製したドットと比較すると、Hcが大きい
 - → 低エネルギーイオンを用いることで、磁化および磁気異方性エネルギーの低下を抑制できる。

◆1 Tbit/in²級のドットアレイ作製

OSEM観察 → ドット径平均17~19 nm程度, サイズ分散 1 nm程度

MFM観察 →個々のドットに対応した磁気信号を確認

Omicro-XMCDによる磁気特性評価

→ 17%程度のSFDがあることがわかった

謝辞

<u>外部資金</u>

本研究の一部は

·科学研究費補助金(若手研究(B)課題番号19760243)

・NEDOグリーンITプロジェクト

の補助により実施された.

SPring-8実験課題

本研究は

・文科省先端大型研究施設戦略活用プログラム(2005B~2006B)

・重点ナノテクノロジー支援課題(2007B~2009B)

で行われた.

