

- SPring-8の紹介
- SPring-8における産業利用の状況 ⇒ 産業利用事例集
- SPring-8放射光を用いたガラス・セラミックスの研究方法
 - > XAFS分光法 ➡> 第1回研究会
 - > 高エネルギーX線を利用したXRD法 ➡ 第2回研究会予定
 - > シミュレーション技術を用いた構造モデルの最適化
- SPring-8を使うための利用制度

SPring-8利用推進協議会 研究開発委員会 SPring-8ガラス・セラミックス研究会(第1回)—ガラス・セラミックス材料の機能 発現を分析・解析するためのXAFS分光法の利用 平成22年8月27日(金)

放射光を利用するための研究手法

2010.5.17 現在

SPring-8 ビームラインマップ

共用及び専用BL利用数の推移

供用開始から約11年間(1997B~2009B)

〇実施課題数 共用:12,752件、 専用: 3,592件 <u>合計 16,344件</u> 〇利用者数 共用:81,521人、 専用:28,702人 <u>合計 110,223人</u>

1年あたり(2009A、B)

2010年3月までに延べ11万人の研究者が利用!

〇実施課題数共用: 1, 391件、専用: 513件合計 1, 904件〇利用者数共用: 9, 033人、専用: 3, 905人合計 12, 938人

利用者数の推移

SPring

共用BLにおける所属機関別利用研究課題数 5Pring・

※所属機関分類

●大学等教育機関:国公立大学、私立大学、高等専門学校等
 ●国公立研究機関等:独立行政法人、大学等共同研究機関、公益法人、特殊法人等
 ●産業界:民間企業(海外企業の日本法人を含む)
 ●海外:海外の全ての機関・法人等

産業界における利用企業及び利用分野

SPring 8

- SPring-8の紹介
- SPring-8における産業利用の状況 ⇒ 産業利用事例集
- SPring-8放射光を用いたガラス・セラミックスの研究方法
 - > XAFS分光法 ➡> 第1回研究会
 - ▶ 高エネルギーX線を利用したXRD法 📫 第2回研究会予定
 - > シミュレーション技術を用いた構造モデルの最適化
- SPring-8を使うための利用制度

SPring-8利用推進協議会 研究開発委員会 SPring-8ガラス・セラミックス研究会(第1回)—ガラス・セラミックス材料の機能 発現を分析・解析するためのXAFS分光法の利用 平成22年8月27日(金)

なぜガラス構造を調べるのか? - 酸化物ガラスの機能発現と構造 -

▶ 酸化物の機能特性の発現の理由(構造単位および長距離構造)ならびにガラスにおける発現の有無

准长小士	ガラフの価	発現の理由		ガラフにおける発明の样子
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	カノへの例	構造単位	長距離構造	カノスにわける光苑の塚丁
[光物性]				
透明性	酸化物ガラス	0		結晶と同様に透明
光吸収	遷移金属着色ガラス	0		結晶と同様着色
蛍光	希土類含有ガラス	0		結晶中と同様
レーザー	Nd ³⁺ 含有ガラス	0		結晶中と同様
[電子物性]		0		
アルカリイオン 伝導	Na ₂ O-CaO-SiO ₂ ガラス	0		結晶と同様に空孔を経てイオ ンが拡散
超イオン伝導	AgI-Ag ₂ O-MoO ₂ ガラス	0	0	結合の弱いAg+が伝導に寄与。 拡散経路有り。

・光ファイバー、光導波路ガラス、ガラスレーザー、フォトクロミックガラス、非線形光学 ガラス、アップコンバージョン蛍光ガラス、光化学ホールバーニングガラス、生体医療用 ガラス、マシナブルガラス、
・オキシナイトライドガラス、ハライド化合物ガラス、カルコゲナイド化合物ガラス

•超急冷法、気相経由法、ゾル・ゲル法、イオン注入法



## 石英ガラスの構造を調べる。







## ガラス物質の実験的な構造解析手法

### Experimental techniques

- > X-ray diffraction ⇒ SPring-8
  - Wide-range X-ray diffraction (WAXD)
  - Energy dispersion X-ray Diffraction (EDXD)
- > Neutron diffraction => J-PARC
  - Time-of-flight (TOF) neutron scattering
  - Isotopic substitution
- X-ray absorption fine structure (XAFS) => SPring-8
  - Extended X-ray absorption fine structure (EXAFS)
  - **X-ray absorption near edge structure (XANES)**
- > Anomalous X-ray scattering (AXS) > SPring-8
- Solid state NMR spectroscopy
- > Raman and Infrared spectroscopy



#### X線吸収微細構造(XAFS)





XANES (X線吸収端近傍構造) ターゲット元素の電子情報を反映

- 化学状態(価数等)

XAFS分析の対象は?

SPring

- 非結晶物質の局所構造解析に必須の分析ツール
   XAFSでないと情報が得られない系が多数存在
- 広範な測定対象
  - ▶ 触媒

光触媒、排ガス処理触媒、水素吸蔵・放出に関わる触媒

▶ 材料

発光材料、電池の電極材料、機能性ガラス材料、高耐久性鋼材 ▶ デバイス

透明導電膜、絶縁膜、光記録デバイス材料

▶ 環境関連物質

焼却炉焼却灰、汚泥・汚水・土壌処理、生体内蓄積物質

▶ ヘルスケア関連

歯磨き粉

- 反応下の状態のin-situ計測
  - 触媒、燃料電池電極、焼却炉燃焼
  - ▶ 反応速度論



a) K. Handa, N. Ohtori, Y. Iwadate, N. Umesaki and H. Iwasaki: "XAFS Studies of Alkaline-Earth Borate Glasses", Jpn. J. Appl. Phys., **38** (1999) Suppl. 38-1, 148-151.
b) N. Ohtori, K. Takase, I. Akiyama, K. Handa, Y. Iwadate and N. Umesaki: "An MD Study of the Short Range Structure of RO·*x*B₂O₃ Glasses: R=Mg, Ca, Sr and Ba; x=1, 2, 3 and 4", Third International Conference on "BORATE GLASSES, CRYSTALS & MELTS", 4-9 July, 1999, Sofia, Bulgaria p. 468-473.





Glass	i-j	$r_{ij}$ (Å)	$N_{ij}$ (atoms)	$(\delta_{ij}^2)^{1/2}$ (Å)	Method
$\frac{\text{CaO} \cdot 2\text{B}_2\text{O}_3}{\text{r}_{\text{Ca}}^{2+} + \text{r}_{\text{O}}^{2-} = 2.39\text{\AA}}$	B-O	1.39/1.38	3.21/3.29	-	ND/MD ^{a)}
	Ca-O	2.40±0.01/2.34	6.0±0.2/6.64	0.105±0.01/-	EXAFS ^{a)} /MD ^{b)}
	0-0	2.41/2.40	4.2/4.1		ND/ MD ^{a)}
	B-B	2.74	3.5	-	MD ^{a)}
CaO·4B ₂ O ₃	B-O	1.38/1.38	3.11/3.11	-	MD ^{a)}
	Ca-O	2.41±0.01/2.35	6.0±0.2/6.66	0.106±0.01/-	EXAFS ^{a)} /MD ^{b)}
	0-0	2.40/2.39	4.4/4.0	-	MD ^{a)}
	B-B	2.72	3.8	-	MD ^{a)}







FIG. 2. The absolute values of Fourier transforms (FTs) of  $k^3$ weighted XAFS oscillations (|F(r)|) of Zr30-H0 (upper solid lines), Zr30-H11 (upper dotted lines), Zr40-H0 (lower solid lines), and Zr40-H11 (lower dotted lines) at the (a) NI, (b) Nb, and (c) Zr K-edges. The FT ranges analyzed are 2.7 -13.3 Å⁻¹, 3.0 - 12.0 Å⁻¹, and 2.9 -13.5 Å⁻¹, for Ni, Nb, and Zr K-edges, respectively.

Zr30-H0:  $Ni_{42}Nb_{28}Zr_{30}$ , Zr40-H0:  $Ni_{36}Nb_{24}Zr_{40}$ Zr30-H9:  $(Ni_{42}Nb_{28}Zr_{30})_{0.91}H_{0.009}$ ;  $(Ni_{36}Nb_{24}Zr_{40})_{0.89}H_{0.11}$ 



FIG. 3. Cluster models having the icosahedral structure with the chemical compositions of  $Zr_6Ni_6Nb$  (a), and  $Zr_5Ni_5Nb_3$  (b, c). The sites which can be occupied by hydrogen atoms are also indicated by small blue circles. The bond-lengths obtained by the XAFS analysis are indicated in the bottom part.

H.Oji, K. Handa, J. Ide, T. Honma, S. Yamaura, A. Inoue, N. Umesaki, S. Emura and M. Fukuhara: J. Appl. Phys. **105**, 113527 (2009).



### 内殻軌道から色々な空軌道への遷移に対応



### リチウムイオン電池の正極材料

- ① 高電圧発生(高酸化力)
- ② 高重量エネルギー密度
- ③ リチウム含有
- ④ 高体積エネルギー密度
- ⑤ 優れた可逆性(リチウム脱挿入と酸化還元)

- リチウムイオン
- ◆ 後期3d遷移金属イオン:軽量で有り、より 深い準位での酸化還元反応による強い酸化力
- これらのカチオンを固体とするためのカウン ターアニオン:酸素

Electrode	Average Voltage	Density	Theoretical Capacity	
	[V]	[g/cc]	[Ah/kg]	[Ah/I]
Li _x CoO ₂ (0.5 <x<1)< td=""><td>3.7</td><td>5.1</td><td>137</td><td>699</td></x<1)<>	3.7	5.1	137	699
$L_{1_x}Mn_2O_4$ (0 <x<1)< td=""><td>4.0</td><td>4.2</td><td>148</td><td>622</td></x<1)<>	4.0	4.2	148	622
LI _x FePO ₄ (0 <x<1)< td=""><td>3.4</td><td>3.6</td><td>169</td><td>608</td></x<1)<>	3.4	3.6	169	608
$L_{I_x}FeSiO_4$ (1 <x<2)< td=""><td>2.8</td><td>3.2</td><td>166</td><td>531</td></x<2)<>	2.8	3.2	166	531
(0 <x<2)< td=""><td>2.8</td><td>3.2</td><td>332</td><td>1062</td></x<2)<>	2.8	3.2	332	1062
$L_{I_x}FeBO_3 \ (0{<}x{<}1)$	2.6	3.5	220	770
L1_C6O6 (2 <x<6)< td=""><td>2.5</td><td>1.8</td><td>589</td><td>1060</td></x<6)<>	2.5	1.8	589	1060
Aır	3.3	N.A.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00

(a) LiCoO₂

(b) LiMn₂O₄

(c) LiFePO₄



山田淳夫: "正極材料設計の考え方",第50回電気化学セミナー, 電気化学関西支部, 2010.7.5-6, p.11-21.

## XANESスペクトルの解析法

### □ 電子状態計算法

- 第一原理計算:様々な手法
  - □ OLCAO法(DV-Xα法), FLAPW+lo法(WIEN2k)
- 物性との対応が直接的
- 高エネルギー側(吸収端より上50eV)の計算が困難

## □ 多重散乱法

- FEFF8コードなど:原子を球形ポテンシャルで近似
- 高エネルギー側のEXAFS領域との対応が明瞭
- 低エネルギー領域の精度に少々難あり。

OLCAO : orthogonalized linear combination of atomic orbital FLAPW+lo : full-potential linearized augmented plane-wave + local orbital

## 第一原理バンド計算法による XANESスペクトルの解析





Comparison of Fe K-edge XANES spectra of  $\alpha\text{-Fe}_2\text{O}_3$  (a) experiment and (b) calculation.





エッジピーク(a)  $\alpha$ -Fe₂O₃ (hematite), (b) NaFeSi₂O₆ (aegirine), (c) FeAlPO₄ (Fe-berlinite)

## EuOのXANESスペクトル





### ガラス構造を調べる手段は、動径分布関数が最適 (radial distribution function, r.d.f.)





## **SiO**₂ガラスの構造



## SiO2ガラスにおけるX線回折とパルス中性子回折から得られる干渉関数(*interference function*) Q·*i(Q)*の比較



Figure 23 Mozzi and Warren's [55] X-ray data for vitreous silica. The vertical dashed line indicates the change from Cu K $_{\alpha}$  to Rh K $_{\alpha}$  radiation.



## シンクロトロン放射光を用いた 高エネルギーX線回折

3

高エネルギーX線を用いる事により、ランダム <mark>系物質の回折パターンを高いQ</mark>値まで統計精度 良く測定が可能になる。  $Q_{max} =$ 24 Å-1 T(r) (Å⁻²) 17 Å⁻¹ 実空間での分解能の向上 12 Å-1 高いQをどうやって実現するか? 8 Å-1 Q: 散乱ベクトル (Å-1)  $Q = \frac{4\pi\sin\theta}{2}$ **θ**:回折角(°) r (Å) λ: X線の波長(Å)  $4\pi r^2 \rho(r) = 4\pi r r^2 \rho_0 + \frac{2r}{\pi} \int_{Q}^{Q_{\text{max}}} Q \cdot i(Q) \sin r Q dQ$ 

波長の短いX線 → 高エネルギーX線が必要



*The 5th international conference on* BORATE GLASSES, CRYSTALS AND MELST, July 10-14, 2005, Trento, Italy

#### Structure of Alkaline-Earth Borate Glasses

#### **Motives of research**

- A) Network structure of  $B_2O_3$  glass
- B) Structural relationship between borate glass and melt
- C) Structure of alkali/alkaline earth borate glasses
- D) Effect of the alkali/alkaline earth oxides on the short-range order structure of borate networks



Fig. 9 Superstructural units occurring in anhydrous binary crystalline borates.



#### HIGH ENERGY X-RAY STUDY ON THE STRUCTURE OF VITREOUS B₂O₃

K. Suzuya, S. Kohara, Y. Yoneda and N. Umesaki: Phys. Chem. Glasses, 41 (2000), 282.

The High energy X-ray (40-300keV) diffraction (HEXRD) measurement on the  $B_2O_3$  glass has been carried out at 41keV, using a bend magnet beam at SPring-8 and a plate sample, 2.6mm in thickness. The sample is investigated in transmission geometry. Thus, the accurate structure factor S(Q) of  $B_2O_3$  glass in the Q range of  $0.9 \text{ Å}^{-1} - 24.3 \text{ Å}^{-1}$  is on obtained with very systematic corrections, especially for very small absorption correction for the sample.



*The 5th international conference on* BORATE GLASSES, CRYSTALS AND MELST, July 10-14, 2005, Trento, Italy



- Neutron data from A. C. Hannon, D. I. Grimley, R. A. Hulme, A. C. Wright and R. N. Sinclair: J. Non-Cryst. Solids, 177 (1994) 299.
- Fig. 8 Slice through a RMC configuration ( $10\text{\AA} \times 10\text{\AA} \times 10\text{\AA}$ ) of vitreous B₂O₃.
- Fig. 6 Bond angle distribution for  $B_2O_3$  glass

SPring.

FSDP:First Sharp Diffraction Peak

120

60

60

 $\theta$  (degree)

0

120

0

60

120

#### RDFからPDF (atomic pair density function) として様々な物質の構造評価 SPring. への拡張



The sharp features at low-*r* are the intra-ball C–C correlations. Above 7.1 Å only inter-ball correlations are present which are very weak because the balls are spinning.

r (Å)
Figure 6.5. Fits of structural models of PbZrO₃ to neutron powder diffraction data taken at SEPD at T = 10 K model. (a) Rietveld refinement carried out in *Q*-space. (b) Real-space fit to the PDF from the same data (Teslic and Egami, 1998).

9

.03



## Structural Models of Oxide Glasses

## • Modeling of oxide glasses

> Debye scattering equation

$$Q \cdot i(Q) = \sum_{i=1}^{m} \sum N_{ij} \exp\left(-b_{ij}Q^2\right) f_i(Q) f_j(Q) \frac{\sin(Qr)}{r_{ij}}$$

> Molecular dynamics (MD) simulation

$$u_{ij} = \frac{Z_i Z_j}{r_{ij}} + f_0 (b_i + b_j) \exp\left[\frac{a_i + a_j - r_{ij}}{b_i + b_j}\right]$$

> Reverse Monte Carlo technique

$$\chi_n^2 = \sum_{i=1}^m \left[ A_n^C(Q_i) - A^E(Q_i) \right]^2 / \sigma^2(Q_i)$$



## Structural Models of Oxide Glasses by MD Method





#### STRUCTURAL STUDIES OF xmol%K₂O-B₂O₃ (x=0, 10 and 30) GLASSES AND MELTS

N. Umesaki, D. A. H. Cunnigham, K. Handa and Y. Iwadate: "Cation and Network Structure in Binary Potassium Borate Glasses", Borate Glasses, Crystals & Melts, ed. By A. C. Wright, S. A. Feller and A. C. Hannon, The Society of Glass Technology, Sheffield, (1997), p. 99-106.

Table 2Short-range order (SRO) parameters for K2O-B2O3 glasses and melts obtained from<br/>neutron/X-ray diffraction, EXAFS and MD results.



XRD: X-ray diffraction; ND: neutron diffraction

#### SPring・8 粉末XRDとEXAFSを用いたRMC法による構造モデルの最適化



Fig. 2 Three-dimensional atomic view of the initial NaCl type structure (left-hand side) and relaxed structure by RMC moves (right-hand side).



Figure 5. The RMC results (XRD and Ge EXAFS) for sample no.7 with the addition of the conditions of *frozen* Ge, *frozen* Sb and *frozen* Ge and Sb for a-GST. The symbols represent experimental data and the lines are for the RMC model.







Figure 6. The  $g_{ij}(r)$  and  $S_{ij}(Q)$  obtained from the result for sample no. 7. The corresponding  $F^{M}(Q)$  and  $\chi^{M}(k)k^{3}s$  are shown in figure 4.



- SPring-8の紹介
- SPring-8における産業利用の状況 ⇒ 産業利用事例集
- SPring-8放射光を用いたガラス・セラミックスの研究方法
  - > XAFS分光法 ➡ 第1回研究会
  - ▶ 高エネルギーX線を利用したXRD法 ➡ 第2回研究会
  - > シミュレーション技術を用いた構造モデルの最適化
- SPring-8を使うための利用制度

SPring-8利用推進協議会 研究開発委員会 SPring-8ガラス・セラミックス研究会(第1回)—ガラス・セラミックス材料の機能 発現を分析・解析するためのXAFS分光法の利用 平成22年8月27日(金)

## 共用BL及び専用BLの利用制度(概要)^{SPrime}・



SPring-8 ビームラインマップ

2010.5.17 現在





### 利用制度の具体化

- ◆産業利用向けた制度の構築
  - ⇒<u>適時,計画性,継続性,即時性</u>を満たす**柔軟な利用形態へ**

### ◆具体的内容 <---**「重点産業利用課題」**

- ▶年4回公募…2007B期から運用開始(07年9月 第2期募集, 12月BT配分)
  - ⇒3本の産業利用ビームラインに適用
- ▶ 通年課題 ··· 2007B期の第2期公募から
- ▶成果公開延期 … 最大2年間の報告書公開を延期

⇒延期終了時点での報告で明確化

▶<u>測定代行</u> … 2007B期の第2期公募時期に合わせて開始 ⇒ 手法:XAFS(産業利用ⅡビームラインBL14B2) 本格実施中 粉末X線回折(産業利用ⅠビームラインBL19B2) 本格実施中

#### 支援組織 (要員)

#### コーディネーター・研究技術支援スタッフの業務内容



## ご清聴ありがとうございます。

# 質問や相談がございましたら、気軽にお聞きください。

No. of the second second