Spring-8利用推進協議会 第3回ガラス・セラミックス研究会 2012年1月27日(金)

中性子とX線の相補的利用による 機能性ガラスの構造観察

京都大学原子炉実験所 福永俊晴

今日の話の内容

- (1) 中性子の特徴と、X線との違い
- (2) 金属ガラスの構造と安定化
- (2) 水素貯蔵材料について
- (3) 超イオン伝導材料について
- (4) 全散乱装置 (NOVA) について

中性子の特徴

原研中性子利用研究センター パンフレット(2003)

高い「透過力」

原子核と力を 及ぼし合う「核散乱」

電子の磁気モーメントと 力を及ぼし合う 「磁気散乱」

波の干渉効果として 波紋をつくる「回折」

エネルギーのやり とりをする 「非弾性散乱」

中性子ならびにX線の散乱能からみた違い

エネルギーから見た中性子とX線の違い

	構造研		X線		紫外線	可 視 光	赤外線	遠赤夘	 線 マ	イクロ波
電磁波	波長 (nm) 振動数 (sec ⁻¹)	0.1 3x10 ¹⁸	1 3x10 ¹⁷	10 3x10 ³	100 ¹⁶ 3x10 ¹⁵	10 ³ 3x10	10 4) ¹⁴ 3x1	10⁵ 0 ¹³ 3x1	10 9 10 ¹² 3>	6 (10 ¹¹
	エネルギー (eV)	12400	1240	124	12.4	1.:	24 0.	124 0	.0124	0.00124
世子	速度 (m/sec) 波長 (nm)	1.55x10 ⁶ 0.00025	4.9x10 ⁵ 0.0008	1.55x 0.00	10 ⁵ 4.9x1 25 0.00	0 ⁴ 1.55 98 0.	5x10 ⁴ 4.9 . 025 C	9x10 ³ 1.5 9.081 (55x10 ³ 0.25	4.9x10 ² 0.807
			0.001	nm	0.01 エピサー	nm -マル	0.	│ 1 nm 熱中性	}	1.0 nm 冷中性子
								構	造研究	1

金属ガラスの構造と安定化

類似のガラスにも構造の違いがあるのか?

Voronoi**多面体解析とは?**

ボロノイ多面体解析

ボロノイ多面体の分類

ボロノイ多面体から見た構造の違い

ボロノイ多面体からみた安定化

Ni_{33.3}Zr_{66.7} glass
 Ni₂₅Zr₆₀Al₁₅ glass

ボロノイ多面体解析

安定化とは20面体の数の増加

 $Ni_{33.3}Zr_{66.7}$ glass

around Ni

 $Ni_{25}Zr_{60}AI_{15}$ glass

around Ni, Al

Cu₃₃Zr₆₇ガラスにAlを添加したCu₂₈Zr₆₇Al₁₅ガラスの安定化

Dynamics of $Cu_{33}Zr_{67}$ and $Cu_{28}Zr_{67}Al_{15}$ metallic glasses (neutron inelastic scattering)

1. 構造の多面体解析: AI添加により20面体的多面体増加

2. ダイナミックス:低エネルギー励起(ボゾンピーク)の減少

強度が低下することは系のfree volumeが減少したことを示す。

水素貯蔵材料の構造研究

Coordination number and RDF(r) (X)

c-TbFe₂D_{3.8}

Nearest neighbor coordination number and interatomic distances for crystalline and amorphous $TbFe_2D_x$ by X-ray diffraction

Coordination number and RDF(r) (N)

Three-dimensional structure

From the coordination numbers and atomic distances which are obtained experimentally by neutron and X-ray diffraction.

Structure of amorphous TbFe₂D_{3.0} by Reverse Monte Carlo simulation

TbFe2D3.0 アモルファス合金の各原子種の分布の視覚化

TbFe₂D_{3.0}アモルファス合金の原子分布

水素原子の分布

Tb原子の分布

Fe原子の分布

Structure of amorphous TbNi₂D_{2.4} by Reverse Monte Carlo simulation

(Li₂S)_x(P₂S₅)_{100-x}ガラスの イオン伝導性と構造

Li₂S-P₂S₅系超イオン伝導材料の面白味

(Li₂S)₇₀(P₂S₅)₃₀ガラスを240^oCで2時間熱処理することによって、超 イオン伝導性の"準安定な"結晶相が析出する。

[1] M. Tatsumisago *et al., Solid State Ionics*, **154-155** (2002) 635-640.
[2] F. Mizuno *et al., Advanced Materials*, **17** (2005) 918-921.

$(Li_2S)_x(P_2S_5)_{100-x}$ ガラスの電気伝導特性

 $(Li_2S)_x(P_2S_5)_{100-x}$ ガラスの室温での電気伝導度 σ_{RT} および活性化エネルギー E_a

$(^{7}Li_{2}S)_{x}(P_{2}S_{5})_{100-x}$ ガラスの構造因子S(Q)

$(^{7}Li_{2}S)_{x}(P_{2}S_{5})_{100-x}$ ガラスの動径分布関数

(⁷Li₂S)_x(P₂S₅)_{100-x}ガラスの第一隣接原子配位の組成変化

(1) P原子は4個のS原子に囲まれてPS₄四面体を形成
 (2) Li₂S量が増加してもP原子周りのS原子の配位数は変化なし
 (3) Li₂S量の増加に伴い、P原子と非架橋Sの相関が増加

32

Li₂S割合増加による構造変化

PS_4 四面体のネットワークに $Li_2Sが入っていくと・・・・$

① Li_2S の割合が増加しても PS_4 四面体は保持される。 ② Li_2S の増加により、非架橋のS原子が生成する。 ③ Li_2S が増加しても電気的中性条件が満たされる。

1個の架橋Sが切れて2個の非架橋Sが生成される。 = Liの数と同数の非架橋Sが新たに生成される。

モデリングの条件:

(1) PS₄四面体の構成

(2) 各相関に対する最近接原子間距離の制限

34

ガラスの3次元構造モデル

Liイオン周りの配位環境

x =40

Liイオン周りの非架橋Sの配位数N_{Li-NBS}分布

分布の中心がLi,S量の増加とともに 配位数が2から4へとシフトしている。 Liイオンは非架橋 S の近傍に存在する LiイオンはPS』四面体のネットワークの

寸断によって生じた非架橋 S の周囲に 分布している

(⁷Li₂S)_x(P₂S₅)_{100-x}ガラスの3次元構造 Li **PS**₄ *x* =20 *x* =0 *x* =40 *x* =70 *x* =60 4.0Å以内に存在している Liイオン同士を線で結ぶ

 $Li_2S量が増加すると、NBS の周辺でLiイオン同士が近距離で存在するようになる。$

近距離におけるLiイオン同士の相関と電気伝導度

近距離のLi-Li相関の増加に伴い、Liイオンの伝導経路が拡大

Li7P3S11準安定結晶のイオン伝導性と構造

何故、ガラスから準安定結晶 (ガラスセラミックス)になると イオン伝導が上昇するの か?

⁷Li₇P₃S₁₁準安定結晶のリートベルト解析結果

X線による構造データ: H. Yamane et al., Solid State Ionics, 178 (2007)1163-1167.

RMCモデリングによる準安定結晶のガラス化

その逆に、⁷Li₇P₃S₁₁準安定結晶の原子配列を強制的に乱すことで、 $(^{7}Li_{2}S)_{70}(P_{2}S_{5})_{30}$ ガラスの原子配列を再現。

⁷Li₇P₃S₁₁準安定結晶

(⁷Li₂S)₇₀(P₂S₅)₃₀ガラス

⁷Li₇P₃S₁₁準安定結晶の構造を初期構造とした (⁷Li₂S)₇₀(P₂S₅)₃₀ガラスのRMCモデリング

準安定結晶を初期構造としたRMCモデリング

以後、⁷Li₇P₃S₁₁準安定結晶を⁷Li₇P₃S₁₁結晶と称する。

3次元構造([PS4]で描画 & [LiS4]で描画)

Liの動きを知るための3次元構造の描画

Liの流れの2種類の形態

【LiS₄】の間には空隙(□)を有するS₄四面体(【□S₄】)が存在

(⁷Li₂S)₇₀(P₂S₅)₃₀ガラス

【LiS₄】と【□S₄】で描画

【□S₄】の大きさ?

すべての【□S₄】に対して以下の2つの条件を満たすものを抽出

【LiS₄】とLiイオンを受け入れられる【□S₄】の位置分布

⁷Li₇P₃S₁₁準安定結晶の場合、「赤球」と「青球」は規則的な ネットワークを形成し、連続的に繋がっている

【LiS₄】--【□S₄】2元系の部分二体分布関数g_{i-i}(r)

Liイオンを収容できる【□S4】(青球)の配位数?

【LiS₄】近傍のLiイオンを受け入れられる【□S₄】の配位数分布

 $(r_{max} = 2.70 \text{\AA})$

【LiS₄】周りのLiイオンを収容できる【□S₄】の平均の配位数は、 »⁷Li₇P₃S₁₁準安定結晶・・・・・3.91個 »(⁷Li₂S)₇₀(P₂S₅)₃₀ガラス・・・1.94個(結晶の約半分)

⁷Li₇P₃S₁₁のイオン伝導機構についての考察

 $E_{\rm a} = 22.5 \text{ kJ/mol}$ $N_{\rm ave.} = 3.91$ (⁷Li₂S)₇₀(P₂S₅)₃₀ガラス

 $E_{\rm a} = 42.3 \text{ kJ/mol}$ $N_{\rm ave.} = 1.94$

活性化エネルギーの比:

$$E_a(ガラス) = \frac{42.3}{22.5} \sim 2$$

平均配位数の比:
 $N_{ave.}(ガラス) = \frac{1.94}{3.91} \sim \frac{1}{2}$

⁷Li₇P₃S₁₁のイオン伝導機構についての考察

(Li₂S)₇₀(P₂S₅)₃₀ガラスとLi₇P₃S₁₁の構造と活性化エネルギーの関係

構造学的には伝導経路

J-PARC/物質生命科学実験施設の紹介

液体・非晶体の構造測定のための 中性子全散乱装置(NOVA)

実験室内部の鳥瞰図

中性子実験装置

NOVAの性能と周辺機器

NOVA の検出器バンク構成と性能

検出器バンク名	散乱角 20 [度]	試料-検出器間距離 [m]	平均分解能 (最高~最低) [%]	測定Q領域[Å ⁻¹] (d領域[Å])
小角バンク	0.7~9	4	7 (4~50)	0.01 ~ 8 (0.8 ~ 628)
20 度バンク	12.6~28	2.8~3.0	2.5 (1.7~3.9)	0.2 ~ 26 (0.2 ~ 31)
45度バンク	33~57	1.7~1.9	1.2 (0.9~1.5)	0.4 ~ 50 (0.1 ~ 16)
90 度バンク	72~108	1. 2~1.3	0.6 (0.5~0.7)	1 ~ 82 (0.08 ~ 6.3)
背面バンク	135~170	1. 0~1.4	0.3 (0.3~0.35)	1.4~ 100 (0.06 ~ 4.5)

NOVA で整備された試料環境制御機器

機器名	性能	備考
水素ガス雰囲気下 in-situ 実験 装置	最大 10 MPa 温度制御範囲: 50 K~473 K	
高温実験装置	温度制御範囲:室温~1373 K	
高圧実験装置	最高圧力: 17 GPa 室温のみ	HydroStar 物性グループ 製作
室温実験装置	10 個の試料の自動測定可能	
非弹性散乱実験	エネルギー分解能は 10~20%	他の試料環境制御と併 用が可能だが、測定時間 は10倍以上必要

NOVAの計算機構成図

NOVAで取得される中性子回折データは、最大で33 MByte/sec = 2.9 TByte/day

21台の計算機

種々のテスト実験

震災復旧後のH24,25年度の運転計画

Acknowledgment:

京都大学森一広、小野寺陽平 岡山大学伊藤恵司 高エネ研大友季哉