SPring-8 次世代先端デバイス研究会(第2回) —硬X線光電子分光(HAXPES)によるデバイス評価—

硬X線光電子分光(HAXPES)の特徴と SPring-8 BL46XUのHAXPES装置の紹介

(公財)高輝度光科学研究センター(JASRI) 産業利用推進室 陰地 宏

Outline

- HAXPESとは?
 - HAXPESの特徴
 - BL46XUにおけるHAXPES分析例
- BL46XUのHAXPES装置
 - SPring-8の他のHAXPESビームラインの中での BL46XUのHAXPESの特徴
 - BL46XUの概略
 - VG-Scienta R4000 (≤ 10 keV)
 - Focus HV-CSA 300/15 (≤ 15 keV)

Outline

- HAXPESとは?
 - HAXPESの特徴
 - BL46XUにおけるHAXPES分析例
- BL46XUのHAXPES装置
 - SPring-8の他のHAXPESビームラインの中での BL46XUのHAXPESの特徴
 - -BL46XUの概略
 - VG-Scienta R4000 (≤ 10 keV)
 - Focus HV-CSA 300/15 (≤ 15 keV)

硬X線光電子分光(HAXPES)とは?

HAXPESのメリット(1): 検出深度が深い

検出深度比較:SX-PES vs. HAXPES

検出深度が深いことのメリットの例

SX-XPS

表面のSiO2の成分が強く観測されバルク Siの成分が埋もれてしまう

⇒ 試料の前処理(*e.g.* Arスパッタエッチン グ)が必要

HAXPES

表面のSiO2の成分はかなり小さくなり、バルクのSiの成分が主に観測

⇒ 試料の前処理が不要

Y. Takata., et al., Nucl. Instr. Met. Phys. Res. A, 547, 50 (2005).

HAXPESのメリット(2): 測定可能なピークが多い

ラボXPS

1.5 keV以下ではピークが密集

→ 他のピークと重畳しやすい

• s軌道以外はピーク分裂で解析困難

HAXPES

- 共存元素の内殻やオージェ、プラズモンロス等のピークの重畳を回避可能
- ピーク分裂がなく解析が容易な深い1s
 準位を利用できる(Al 1s: 1.65 keV, Si 1s: 1.84 keV)

光電子の束縛エネルギー (eV)

HAXPESのデメリット: (なぜ最近までHAXPESが実用的でなかったのか?)

21世紀に入って,

- 1. 第三世代光源の挿入光源の登場で高輝度X線が利用可能となった
- 2. 高エネルギー分解能・高耐圧な電子エネルギー分析器の出現
- により実用的な信号強度とエネルギー分解能が得られるようになった。

※最近はラボの硬X線源の開発も進んでいる

分析例 (1): ステンレス鋼中のCrの分析 (ラボXPSでは不可能な深い内殻準位の測定)

Web公開の了解が得られなかったため、 図表を削除致しました。

分析例(2): リチウムイオン電池電極の分析 (埋もれた層の分析)

分析例(3): SiO₂/IGZO界面における界面準位の分析 (バイアス印加HAXPES)

Outline

- HAXPESとは?
 HAXPESの特徴.
 BL46XUにおけるHAXPES分析例
- BL46XUのHAXPES装置
 - SPring-8の他のHAXPESビームラインの中での BL46XUのHAXPESの特徴
 - BL46XUの概略
 - VG-Scienta R4000 (≤ 10 keV)
 - Focus HV-CSA 300/15 (≤ 15 keV)

SPring-8におけるHAXPESビームライン

SPring-8におけるHAXPESビームライン

Beamline	*	Analyzer	KE /keV		• 産業利田 恵田と
BL09XU (Res. & Util. Div., JASRI)	Ρ	R4000		Mainly for academic use Spin-resolved detector	てはHAXPES実験 が可能た 唯一の
BL12XU (NSRRC, Taiwan)	С	A-1 HE	≤ 12	2-analysers for measuring pol. dep. of PE	が可能な唯一の 共用ビームライン。
BL15XU (NIMS)	С	R4000	≤ 10	Wide range X-ray energy (2-10 keV) Bias applied experiments	・ユーザーフレンド
BL16XU (SUNBEAM)	С	R4000	≤ 12	For industrial use (13 company) Transfer vessel	リーな測定システ ム。
BL19LXU, BL29XU (RIKEN)	R	A-1 HE	≤ 12	For academic use (Not permanently installed at BL)	 異なるタイプのア
BL28XU (Kyoto Univ.)	С	EW4000	≤ 10	Wide angle lens (±30°) Transfer vessel Natl. proj. for battery materials	ナライザーを装備 する2つの装置を
BL36XU (Univ. Electro-Commun.)	С	R4000-HiPP2	≤ 10	AP-HAXPES (≤ 50 mbar) Natl. proj. for FC catalysts	設直(R4000 and HV-CSA).
BL46XU (Industrial Div., JASRI)	Р	R4000	≤ 10	For Industrial use Auto-measurement system Transfer vessel Bias applied experiments	 産業利用推進室 内が保有する他
		HV-CSA 300/15	≤ 15	The highest KE available	の測定技術とのコ
BL47XU (Res. & Util. Div., JASRI)	Ρ	R4000	≤ 12	Mainly for academic use Micro-beam (1 um X 1 um) Wide-angle lens (±34°) AP-HAXPES by sample cell	*C: contract P: Public R: Riken

JASRI産業利用推進室が運営するビームライン

Beamline	B/U	Mono.	E range	techniques
BL19B2	Bending	Water-cooled DCM	5-72 keV	Powder diffraction, GIXD, SAXS, USAXS, XRR, Imaging
BL14B2	Bending	Water-cooled DCM	3.8-72 keV	XAFS
BL46XU	Undulator	LN2-cooled DCM (+ CC for HAXPES)	6-35 keV	GIXD, XRR, HAXPES

様々な測定技術を一つの部門で共有

様々な手法のコンビネーションでユーザー支援が可能

BL46XUの概略

Mar, 17, 2015

X線光学系(HAXPES実験時)

R4000-10keV vs. HV-CSA 300/15

	VG Scienta R4000-10 keV	Focus HV-CSA 300/15	
アナライザー	半球型(hemisperical)	円筒扇型(cylindrical sector)	
のタイプ			
KE	≤ 10 keV	≤ 15 keV	
エネルギー	~0.25 eV @ $hv = 7.94$ keV,	~ 0.5 eV @ $hv = 14$ keV, $E_p = 100$ eV,	
⑦ 阱 肥	$E_{p} = 200 \text{ eV, SIIt} = \text{curved 0.5 mm}$ $- \text{Exp. data}_{\text{fitting}}$ Si(111)DCM +Si (444) CC Slit size: 0.5C, delta E 0.235 eV $E_{p}=200 \text{ eV, RT}$ $- \text{Fitting}$ Si(111)DCM +Si (444) CC Slit size: 0.5C, E_{p}=200 eV, RT	SIIT = 0.5 mm Si(333)DCM Slit size: 0.5, Ep=100 eV, RT hv~14016.44 eV delta E 0.501 eV 14015.0 14016.0 14017.0 14018.0 Kinetic energy/eV	
その他	・GUIを備えた自動測定システム	・トランスファーベッセル	
	・トランスファーベッセル - バノファロロ計約+1 / グ	・Blanking電極を内蔵。将来的に時分	
Mar, 17, 2015	・ハイ ブ ヘFI 加試 キャハノレジ 一 SPring-8次世代先端デバイス研究	刮 冽 廷 / ハ 円 能 。 会 (第2回) 19/32	

HAXPES測定システム(R4000装置)

VG-Scienta R4000–10keV 電子分光器の特徴

R4000装置の特徴(1): ユーザーフレンドリーな測定システム

	DOM CO	パラメータ入出す	7 stoffAl			
		2			Pec	ion fBIR
S	tart	Low(e)	v) HighleV)	Steple	meV) Dwe≋(ms)	
Num	Mode	Position B	Region	Swp	Deta-S	-
2	1	Au D621,00	5,1s	10	Au DE2T 1 80 S 1s	
3	1	Au DS2T 1,80	0,1s	30	Au DS2T_1_80_0_1s	
4	1	Au,D62T,1,80	Au,4f	2	Au DE2T,1,80,Au 4f	_
0	1	DS2T_1_80	S.1s	2	DS2T_1_80_5_1s	-
7	1	DS2T 1 80	C1s	10	DS2T 1 80 C 1s	
8	1	Au,0521,2,80	S,1s	10	Au,0621,2,80,5,1s	
9	4	Au CS2T 2,80	C_ts	30	Au DS2T 2,80,0,1s	
10	1	Au,0621,2,80	Au 4f	2	Au,DS2T,2,90,Au,4f	_
11	5	Au DS2T 3,80	S_1s	10	Au[0627,3,80,5,1s	_
12		Au D621 3,80	C1s Audi	30	Au DE2T 3 80 C 1s	
14	1	D62T.2.80	S1s	5	DS2T 2 80 S 1s	
15	4	DS2T 2.80	Sits	5	D62T 2 80 Si 1s	
16	1	D62T,2,80	0_1s	10	D62T,2,80,C,1s	
17	1	Sit 00,80	SI_1s	1	Si100,80,Si,1s	
18	1	\$1100,80	Si,28	2	Si100,80,Si 2s	_
19	5	Hul5,80 P-45.80	51.19	2	HU15 80 SI 1s	
20	1	Ru15.80	Rußd	2	Ru15 80 Ru2d	
22	1	Ru9.80	Sils	2	Rub 80 SL1s	
			30 J T 220	時刻		
			48 J T T	峰刻		.

複数の試料位置,測定 領域についての自動 測定。

H. Oji *et al.,* J. Phys. Conf. Ser. **502** (2014) 012005.

R4000装置の特徴(2): 大気非暴露試料導入システム

陰地ら, J. Surf. Anal. 21 (2015) 121.

R4000装置の特徴(3): バイアス印加HAXPES測定用試料ホルダー

HAXPES測定装置(HV-CSA装置)

H. Oji et al., J. Phys. Conf. Ser. 502 (2014) 012006. 陰地ら, J. Surf. Anal. 21 (2015) 121. sample bank sub chamber <mark>∎quį</mark>ck access door Focus HV-CSA 300/15 load-lock chamber neutralizer transfer vessel CCD cameras X-ray measurement chamber

Mar, 17, 2015

77 mm

Focus HV-CSA 300/15電子分光器の特徴

- 形式: **円筒扇(Cylindrical sector**)型
- 測定エネルギー範囲:0-15 keV
- パスエネルギー: 1 500 eV (通常50 100 eV)
- レンズ倍率:5-60倍(通常 5-10倍)
- 入口スリットサイズ:
 (縦)0.5, 1.5, 4.5 mm×(横)12 mm
- 二次元検出器(MCP+蛍光スクリーン+ CMOSカメラ)
- 外部制御可能(TCPサーバ機能)

HV-CSA導入のメリット

28 Ni 8333 68 Er 9751 9264 835 29 Cu 8979 69 Tm 10116 9617 86 30 Zn 9659 70 Yb 10486 9978 894 31 Ga 10367 71 Lu 10870 10349 924 32 Ge 11103 72 Hf 11271 10739 956	8 8 4 4
29 Cu 8979 69 Tm 10116 9617 867 30 Zn 9659 70 Yb 10486 9978 897 31 Ga 10367 71 Lu 10870 10349 924 32 Ge 11103 72 Hf 11271 10739 956	8 4 4
30 Zn 9659 70 Yb 10486 9978 894 31 Ga 10367 71 Lu 10870 10349 924 32 Ge 11103 72 Hf 11271 10739 956	4
31 Ga 10367 71 Lu 10870 10349 924 32 Ge 11103 72 Hf 11271 10739 956	4
32 Ge 11103 72 Hf 11271 10739 956	1
	1
33 As 11867 73 Ta 11682 11136 988	1
34 Se 12658 74 W 12100 11544 102	.07
35 Br 13474 75 Re 12527 11959 105	35
36 Kr 14326 76 Os 12968 12385 108	71
37 Rb 15200 77 Ir 13419 12824 112	15
X-RAY DATA BOOKLET 78 Pt 13880 13273 115	64
Lawrence Berkeley Laboratory, University of California 79 Au 14353 13734 119	19
80 Hg 14839 14209 122	.84
81 TI 15347 14698 126	58
82 Pb 15861 15200 130	35
内殼進位 ^{83 Bi} 16388 15711 134	19
84 Po 16939 16244 138	314
85 At 17493 16785 142	14
86 Rn 18049 17337 146	19
87 Fr 18639 17907 150)31

HVCSAのデータ(1): Au/SiO₂/SiのHAXPES TOAおよび励起エネルギー依存性

Intensity /arb. units

HVCSAのデータ(2): <u>Au膜の14 keV励起HAXPESスペクトル</u>

Mar, 17, 2015

29/32

HVCSAのデータ(3): SiO₂/Si の14 keV励起HAXPES:SiO₂膜厚依存性

120 nmもの厚みが あるSiO₂層の下の Si基板からの信号 を検出

陰地ら, J. Surf. Anal. 21 (2015) 121.

まとめ

- HAXPESは、従来のPESより数倍深い分析深度を有する分析手法で、 従来困難であったバルクや埋もれた界面の電子状態を分析できる。この特徴は、電子デバイスや二次電池材料等、産業応用研究においても有用である。
- BL46XUは共用かつ産業利用専用としてはSPring-8で唯一の HAXPES実験が可能なBLである。
- R4000装置(<10 keV)は、2008年より供用されている。近年ユー ザーフレンドリーな測定システムが導入され、利便性が大幅に向 上した。また、大気非暴露試料導入機構(トランスファーベッセル) やバイアス印加試料ホルダーが導入され、分析可能な試料の幅 を拡大している。
- HV-CSA装置(<15 keV)は、2014年度より供用を開始した。本装置により、R4000装置よりさらに深い領域の電子状態を、実用分析に 十分な高エネルギー分解能で測定できる。

利用研究課題募集中!

- 利用時期:2015A2期(2015年6月下旬~7月)
- 産業利用ビームラインI, II, III (BL19B2, BL14B2, BL46XU)のみ募集

課題種	申請〆切
成果公開優先利用課題	3/26 10:00
産業新分野支援課題	4/2 10:00
一般課題(産業利用分野)	
萌芽的研究支援課題(産業利用分野)	
成果専有課題(一般課題)	
成果専有時期指定課題	随時
測定代行	