グリーンサスティナブルケミストリー研究会(第4回) 2015/12/8 触媒研究の近未来 -作用中の触媒に迫る-SPring-8利用推進協議会 研究開発委員会

金属一酸化物界面を活性点とするC-O結合水素化分解反応 東北大院工 冨重圭一

1,5-Pentanediol

Tetrahydrofurfuryl alcohol (THFA)

3. Ir-ReO_x触媒を用いたグリセリンの水素化分解

4. Ir-ReO_x構造解析

Glycerol

но___он

1,3-Propanediol

バイオマスの発酵、脱水などにより得られる基幹原料

バイオマス化学品合成の化学 建となる3つの視点

(ポリエステル)	
но он	
10~~_01	H

1. バイオマス化学品合成は還元反応

石油由来炭化水素は空気で酸化。バイオマスは、水素で還元。 空気は安価。水素は高価。→リニューアブルな水素製造は重要。

2. バイオマス化学品合成は液相反応

石油由来炭化水素は低極性・低沸点。→気相反応が可能(気・固相) バイオマス由来化合物は高極性・高沸点。→液相反応。溶媒に配慮が必要。

3. バイオマス化学品合成は官能基認識が不可欠

石油由来炭化水素は官能基付加反応。バイオマス由来化合物は、官能基を減 らす反応。どの官能基を取り除くかの認識が必要。

極性溶媒 極性反応場

グリーンサスティナブルケミストリー研究会(第4回) 2015/12/8 触媒研究の近未来 -作用中の触媒に迫る-SPring-8利用推進協議会 研究開発委員会

3. Ir-ReO_x触媒を用いたグリセリンの水素化分解

1,5-ペンタンジオール合成に関する先行研究 1) 従来型水素化分解触媒CuCr₂O₄の使用:非選択的

H. Adkins, et al., J. Am. Chem.Soc. 53 (1931) 1091

2)3段階反応(それぞれの段階では純粋な試薬を使用)

L. E. Schniepp, et al., J. Am. Chem.Soc. 68 (1948) 1646

"直接水素化分解による1,5-ペンタンジオール合成が望まれる (おそらく均一系触媒が使われるだろう)。" M. Sch

M. Schlaf, Dalton Trans. 4645 (2006)

THFAとテトラヒドロフラン(THF)の水素化分解反応比較

使用触媒・実験

使用触媒 (逐次含浸法にて調製)

- Rh/SiO₂ ••• Rh: 4 wt%
- Rh-ReO_x/SiO₂ ••• Rh: 4 wt%, Re/Rh = 0.13, 0.25, 0.5, 1
- Rh-MoO_x/SiO₂ ••• Rh: 4 wt%, Mo/Rh = 0.03, 0.06, 0.13, 0.25, 0.5

(*) 担体: SiO₂:富士シリシア製G-6 (BET表面積535 m²·g⁻¹) Rh: RhCl₃·3H₂O, Re: NH₄ReO₄, Mo: (NH₄)₆Mo₇O₂₄·4H₂O

活性試験(Re, Mo添加量依存実験) 〇回分式反応装置(オートクレーブ)

キャラクタリゼーション

OCO吸着 OXRD, TEM **ORe** L_3 -edge XANES **ORe** L_3 -edge, Mo K-edge EXAFS

- ···· 表面Rh金属数
- ····Reの価数
- ···· Re, Mo周りの触媒構造

Re, Mo添加量依存

Conditions : P = 8.0 MPa, T = 393 K, $m_{cat} = 50$ mg, t = 4 h, Rh = 4 wt%, Reactant = 5 wt% THFA aqueous solution 20 ml.

Re L₃-edge XANES

μt

金属粒子径·CO吸着量測定

Characterization of Rh-MO_x/SiO₂ (M: Re, Mo)

Appl. Catal. B, in press

Catalyst	Mo/Rh or Re/Rh	Particle size XRD (nm)	Dispersion ^a XRD [Rh _s /Rh]	CO adsorption CO/Rh	(Rh _s /Rh) -(CO/Rh)
Rh/SiO ₂	-	2.8	0.39	0.39	0.0
Rh-MoO _x /SiO ₂	0.06	2.7	0.41	0.34	0.07
	0.13	2.6	0.42	0.29	0.13
	0.25	2.5	0.44	0.25	0.19
	0.5	2.7	0.41	0.18	0.23
Rh-ReO _x /SiO ₂	0.13	2.7	0.41	0.28	0.13
	0.25	2.7	0.41	0.23	0.18
	0.5	3.2	0.34	0.17	0.17

^a Rh_s/Rh=1.098 nm/particle seize

(Rh_s/Rh)-(CO/Rh): MoO_x and ReO_x でおおわれるRh表面の割合 Mo/Rh, Re/Rh ≤ 0.13: Mo or Re 原子一つが一つのCO吸着量を抑制 Mo/Rh=Re/Rh > 0.13: 一部のMo or Reの原子はCO吸着を抑制しない

Charact	terization orption	Rh金属の粒- 分散度はほ	子径及び ぼ一定	M: Re	, Mo) Appl. Catal.	B, in press
Catalvet	Mo/Rh		أدرب	on ^a C	O adsorption	(Rh _s /Rh)
	or Re/Rh	XRD (nm)	Rh [Rh	_s /Rh]	CO/Rh	-(CO/Rh)
Rh/SiO ₂	_	2.8	0.39		0.39	0.0
Rh-MoO _x /SiO ₂	0.06	2.7	0.41		0.34	0.07
	0.13	2.6	0.42		0.29	0.13
	0.25	2.5	0.44		0.25	0.19
	0.5	2.7	0.41		0.18	0.23
Rh-ReO _x /SiO ₂	0.13	(+ トトキ. に	/	0.28	0.13
	0.25	CO吸着	量は減少		0.23	0.18
	0.5				0.17	0.17

^a Rh_s/Rh=1.098 nm/particle seize

(Rh_s/Rh)-(CO/Rh): MoO_x and ReO_x でおおわれるRh表面の割合 Mo/Rh, Re/Rh ≤ 0.13: Mo or Re 原子一つが一つのCO吸着量を抑制 Mo/Rh=Re/Rh > 0.13: 一部のMo or Reの原子はCO吸着を抑制しない

Charact	terization orption	Rh金属の粒 分散度はほ	子径及び ぼ一定	M: Re,	, Mo) Appl. Catal.	B, in press
Catalyst	Mo/Rh		أدبي	on ^a C	O adsorption	(Rh _s /Rh)
	or Re/Rh	XRD (nm)	<mark>ک</mark> [Rh _s	,/Rh]	CO/Rh	-(CO/Rh)
Rh/SiO ₂	_	2.8	0.39		0.39	0.0
Rh-MoO _x /SiO ₂	0.06	2.7	0.41		0.34	0.07
	0.13	2.6	0.42		0.29	0.13
	0.25	2.5	0.44		0.25	0.19
	0.5	2.7	0.41		0.18	0.23
Rh-ReO _x /SiO ₂	0.13	汤加量	トトキルこ	/	0.28	0.13
	0.25	CO吸着	量は減少		0.23	0.18
	0.5				0.17	0.17

^a Rh_s/Rh=1.098 nm/particle seize

Mo/Rh=Re/Rh = 0.13では、添加したMo or ReがすべてCO吸着を抑制 添加したMo or ReがすべてRh金属表面と相互作用 → Mo/Rh=Re/Rh = 0.13 の構造解析(EXAFS)

Characterization of Rh-MoO_x/SiO₂ (Mo K-edge EXAFS)

^a Coordination number. ^b Bond distance.

Characterization of Rh-ReO_x/SiO₂ (Re L₃-edge EXAFS)

^a Coordination number. ^b Bond distance.

Model structure of Rh-MO_x/SiO₂ (M: Re, Mo; M/Rh=0.13)

Re, Mo添加量依存

Conditions : P = 8.0 MPa, T = 393 K, $m_{cat} = 50$ mg, t = 4 h, Rh = 4 wt%, Reactant = 5 wt% THFA aqueous solution 20 ml.

Model structure of Rh-MO_x/SiO₂ (M: Re, Mo; M/Rh=0.13)

すべてのRhをMoで修飾 Mo/Rh=0.13が最適 Reで修飾されていないRhあり 最適値はRe/Rh>0.13

Re及びMo酸化物修飾一金属(IrまたはRh)触媒 (Ir-ReO_x, Rh-ReO_x, Rh-MoO_x)を用いた テトラヒドロフルフリアルコールの水素化分解反応による 1,5-ペンタンジオールの合成

水素化分解の活性と選択性のまとめ

THFA, 1 g (5 wt% eq.), catal., 50 mg (for Ir-Re, 150 mg); H_2 , 8 MPa; H⁺/Re=1 (for only Ir-Re); 393 K. Time and conversion: Rh, 4 h, 5.7%; Rh-Mo, 4 h, 50.1%; Rh-Re: 4 h, 56.9%; Ir, 24 h, <0.1%; Ir-Re, 2 h, 43.9%. Glycerol, 4 g (67 wt% eq.; for Ir-Re, 80 wt% eq.), catal., 150 mg (for Ir, 600 mg); H_2 , 8 MPa; H⁺/Re=1 (for only Ir-Re); 393 K. Time and conversion: Rh, 5 h, 3.6%; Rh-Mo, 5 h, 38.9%; Rh-Re: 5 h, 79%; Ir, 240 h, 7.7%; Ir-Re, 12 h, 50.5%.

1,2-PrD, 4 g (20 wt% eq.), catal., 150 mg (for Ir, 300 mg); H₂, 8 MPa; H⁺/Re=1 (for only Ir-Re); 393 K. Time and conversion: Rh, 24 h, 8.8%; Rh-Mo, 4 h, 18%; Rh-Re: 4 h, 26%; Ir, 48 h, 5.1%; Ir-Re, 24 h, 38.6%.

グリーンサスティナブルケミストリー研究会(第4回) 2015/12/8 触媒研究の近未来 -作用中の触媒に迫る-SPring-8利用推進協議会 研究開発委員会

金属一酸化物界面を活性点とするC-O結合水素化分解反応 東北大院工 冨重圭一

1,5-Pentanediol

Tetrahydrofurfuryl alcohol (THFA)

3. Ir-ReO_x触媒を用いたグリセリンの水素化分解

4. Ir-ReO_x構造解析

Glycerol

но___он

1,3-Propanediol

Re酸化物修飾—Ir金属 $(Ir-ReO_x)$ 触媒上のグリセリン水素化分解

T = 393 K, *t* = 12 h, *P* = 8.0 MPa, H₂SO₄ (H⁺/Ir = 1). PrD: propanediol, PrOH: propanol.

Conditions: Catalyst (150 mg), glycerol (4 g), water (1 g), H_2 (8 MPa), H_2SO_4 (H⁺/Ir=1), 393 K.

J. Catal. 272, 191 (2010) Appl. Catal. B 105, 117 (2011)

当時の世界最高収率(38%) 現在も世界最高活性(58 h⁻¹@393 K)

他の報告例(<<10 h⁻¹@453 K)

グリセリンの水素化分解による1,3-PrD合成に関する報告例

Catalyat	Salvant	Glycerol/M	Temp.	1,3-PrD	TOF
Calarysi	Solvent	(molar ratio)	/ K	Yield / %	/ h⁻¹
^a Pt/WO ₃ /ZrO ₂	DMI	290	443	24	3.9
^b Pt/WO ₃ /ZrO ₂	None	-	403	32	-
^c Cu-H ₄ SiW ₁₂ O ₄₀ /SiO ₂	None	-	443	27	-
dPt-Re/C	Water	350	443	13	4.0
^e Pt/WO ₃ /TiO ₂ /SiO ₂	Water	210	453	8	1.5
^f Pt/sulfated ZrO ₂	DMI	280	443	56	0.7
^g Pt/WO _x /AIOOH	Water	110	453	66-69	6.1
^h Rh-ReO _x /SiO ₂	Water (none)	750	393	11	1.7
ⁱ lr-ReO _x /SiO ₂	Water (none)	1390	393	38	15 (36 h)
ⁱ lr-ReO _x /SiO ₂	Water (none)	1390	393	8	58 (2 h)

Pt/WO_x/AIOOH:1,3-PrD高収率 金田(大阪大)

Ir-ReO_x/SiO₂: 2010年当時最高収率、現時点 でも最高TOF(触媒回転速度)、他例より低温。

> J. Catal. 272, 191 (2010) Appl. Catal. B 105, 117 (2011)

^aY. Sasaki., et al., *Catal. Commun.*, 9 (2008) 1360.
^bC.L. Chen et al., *Green Chem.* 12 (2010) 1466.
^cL.Huang et al., *Catal. Lett.* 131 (2009) 312.
^dR.J. Davis et al., *ChemCatChem* 7 (2010) 1107.
^eY. Ding et al., *Appl. Catal. A* 390 (2010) 119.
^fH.Lee et al., *Green Chem.* 13 (2011) 2004.
^gK. Kaneda et al., *ChemSusChem* 6 (2013) 1345.
^hY. Shinmi et al., *Appl. Catal. B* 94 (2010) 318.
ⁱY. Nakagawa et al., *J. Catal.* 105 (2010) 191.

Ir-ReO_x/SiO₂触媒の構造

<u>触媒解析手法</u>

TPR, XPS

CO-adsorption

XAFS, XANES

XRD

TEM

・・・lr 粒子径,金属(lr)の酸化状態

- · · · Ir 粒子径
- ・・・金属(Ir, Re)の酸化状態
- ・・・表面Irメタル量
 - ・・・金属(Ir, Re)の酸化状態,配位状態,粒子径(Ir, Re)

O Irはメタル状態

O Irの粒子径は2 nm程度

O Reは低原子価(+2~+3)の酸化物

O Ir上にReO_xが集積した

J. Phys. Chem. C, 116, 23503 (2012)

Ir-ReO_x/SiO₂触媒の調製

実験: 触媒調製

- ・Ir-ReO_x/SiO₂・・・Ir: 4 wt%, Re/Ir = 1 (モル比)
- ・担体: SiO₂ (富士シリシア G-6 (比表面積: 535 m² · g⁻¹)), 973 K, 1 h 焼成

Ir−ReO_x/SiO₂はIr/SiO₂及びReO_x/SiO₂の単独触媒に比べ低温で還元が進行
 Ir種とRe種の相互作用

XRD, CO吸着	; Ir/SiO ₂ ,	Ir-ReO _x /SiC	P_2 (Re /Ir = 1)
-----------	-------------------------	--------------------------	----------------------------

35/65

触媒	還元温度	lr粒子径	そうし 分	`散度 (<i>D</i> _{XRD})	分散度 (<i>D</i> _{co})	(<i>D</i> _{XRD} − <i>D</i> _{CO}) ^b
	/ K	/ nm		/ %	/ %	/ %
		XRD		XRD	CO吸着 ^a	
Ir/SiO ₂	495	3.6		31	23	8
Ir-ReO _x	415	-	ReがIr金属	၈ –	7	-
/SiO ₂ ^	495	2.0	凝集を抑制	53	16	37
(Re/lr = 1)	695	1.9		56	14	42
	895	2.0		53	11	42
Intensity / a.u.	rO ₂ Ir	Ir/SiO ₂ 4	r-ReO _x /SiO ₂ 895 K 還元 695 K 還元 495 K 還元 415 K 還元 焼成後	^a FT-IRより、III ^b XRDとCO吸: <u>Ir-ReO</u> • XRD (49 Ir(は約2 • CO吸着 D _{CO} (11-	r上のCOは非解離 着から見積もられ <u>〈SiO</u> 2 95-895 K還元) nmのメタルとし (495-895 K還 -16%) << D _{XRD}	吸着 (2068 cm ⁻¹) る分散度の差 て存在 元) (53-56%) 表面に露出
	2θ / °			ししいる	立周の入前方	areu _x い奴復

TPR-XAFS (Temperature Programmed Reduction-X-ray Absorption Fine Structure) →水素流通下で昇温させることで, 触媒を還元させながら 連続的にXAFS測定を行う手法

<u>実験方法</u> 流通ガス:5%水素/アルゴン ガス流量:30 ml/min 昇温速度:5 K/min 測定時間:1 min (2分ごとに1回測定)

Ir L_3 -edge XANES; Ir-ReO_x/SiO₂ (Re/Ir = 1)

37/65

Ir-ReO_x/SiO₂ (Re/Ir = 1); XANES and XPS

Ir L_3 -edge EXAFS; Ir-ReO_x/SiO₂ (Re/Ir = 1)

フーリエ変換後のスペクトル

カーブフィッティング結果

·	配位数						
遠元温度 / K (標準サンプル)	lr–O	lr−lr (or −Re)					
non-red.	6.0	-					
415	6.0						
455	4.3	2.3					
475	0.7	8.9					
495	-	10.8					
695	-	10.8					
895	-	10.8					
Ir powder	-	12					
IrO ₂	6	_					
Fourier filtering ra	ange: 0.12	6-0.322 nm.					
lr種が徐々に還元 lr金属粒子が成長	され, する	Ir金属の凝集は 見られない (XRDと一致)					
====================================							
$Ir - Ir (or - Re) \cdot 0.276 nm (+0.001)$							

39/65

Ir/SiO₂及びIr-ReO_x/SiO₂ (Re/Ir = 1)のIr金属粒子 成長過程におけるIr-Ir(or –Re)配位数の比較

Re L_3 -edge EXAFS; Ir-ReO_x/SiO₂ (Re/Ir = 1)

495 K

475 K

455 K

415 K

6

40/65

×3

×3

×3

×3

			_				
			配位数				
	遠元温度 / K (標準サンプル)	Re=O	Re-O	Re−Ir (or –Re)			
	non-red.	4.0	-	-			
	415	3.3	0.5	-			
	455	1.0	2.5	1.4			
	475	0.4	2.0	4.6			
	495	-	1.6	6.5			
	595	-	1.6	6.5			
	695	-	1.7 /	6.9			
	895	-	1.7	7.7 🕂			
	Ir powder	-		12			
	NH₄ReO₄	4	/ -	- /			
	Fourier filtering	range: 0.0	,)92-0.316 r	, m. 徐々に			
ł	Re−lr (or −Re)の配 [.]	位数は約6	.5で一度安	定增加			
	結合距離(<i>R</i>) Re=O: 0.174 nm (±0.002) Re−O: 0.205 nm (±0.002) Re−Ir (or −Re): 0.272 nm (±0.001)						
	R (Ir−Ir) > R (Re−Ir) ← Reはややカチオニック						

カーブフィッティング結果

non-red. 0 5 2 3 4 1 Distance / 0.1 nm Irと同様の415-495 KでReの還元が進行

触媒構造モデル①; Ir-ReO_x/SiO₂ (Re/Ir = 1)

495 K還元後のIr-ReOx/SiO2 (Re/Ir = 1)のXRD及びCO吸着結果

lr金属粒子	子径 / nm	分散度 (<i>D</i> _{XRD}) / %	分散度 (<i>D</i> _{co}) / %	(<i>D</i> _{XRD} - <i>D</i> _{CO}) / %
XRD	TEM	XRD	CO吸着	
2.0	2.0	53	16	37

41/65

Ir L₃-edge EXAFS測定のIr-Ir (or -Re)配位数10.8 (495 K還元後)から算出される
 金属分散度(約40~50%)はXRDと一致する

触媒構造モデル②; Ir-ReO_x/SiO₂ (Re/Ir = 1)

<u>ReO_xの構造モデル</u>を検討

Irを被覆する第一層の ReO_xの割合は, D_{XRD}-D_{CO}より<u>37%</u>

残りのReO_x(<u>63%)</u>が <mark>第二層</mark>に存在すると仮定

第一層のReO_xの割合は<u>44%</u> (=4/9)

第一層のReOxと第二層のReOx

P P	second layer 1 Re atoms	$\begin{bmatrix} CN_{Re-Ir} = 0\\ CN_{Re-Re} = 8 \end{bmatrix}$
	second layer 4 Re atoms	$\begin{bmatrix} CN_{Re-Ir} = 0\\ CN_{Re-Re} = 3 \end{bmatrix}$
(1 0 0)	first layer 4 Re atoms	$\begin{bmatrix} CN_{Re-Ir} = 4 \\ CN_{Re-Re} = 5 \end{bmatrix}$

CN_{Re-Ir (or -Re)}の平均値; (1×8+4×3+4×9)/9 = <u>6.2</u> EXAFSで得られた CN_{Re-Ir (or -Re)} = 6.5と一致

このモデルの<mark>第二層のReO_xの割合は<u>56%</u> (=5/9)</mark>

Model structure of 3D-ReO_x clusters on Ir-ReO_x/SiO₂

Ir-ReO_x/SiO₂上のポリオールの水素化分解 ChemSusChem 5, 1991 (2012)

Conditions: Substrate 1 g, Water 4 g, Ir-ReO_x/SiO₂ 0.3 g, H₂SO₄ (H⁺/Ir = 1), $P_{H_2} = 8$ MPa, T = 373 K, t = 4 h. BuT = butanetriol, BuD = butanediol, BuOH = butanol.

Ir-ReO_x/SiO₂上のポリオールの水素化分解 ChemSusChem 5, 1991 (2012)

Conditions: Substrate 1 g, Water 4 g, Ir-ReO_x/SiO₂ 0.3 g, H₂SO₄ (H⁺/Ir = 1), $P_{H_2} = 8$ MPa, T = 373 K, t = 4 h. BuT = butanetriol, BuD = butanediol, BuOH = butanol.

Ir-ReO_x/SiO₂上の様々な基質の水素化分解反応 J. Catal. 294, 171 (2012)

Entry	Substrate	Product	t/h	Conv. / %	Selec. /%	TOF / h ⁻¹
1 團	HO	но~~~он	2 8	58.2 100	95.8 82.0	- 609 ghly ctive
2 定	но	но	4	40.4	87.7	186 Ť
3 9 5	HO	но	6	23.9	81.1	ildly 96 active
4		но	6	35.0	76.4	122 ≥ ĕ
5	ОН	но	6	0.0	0.0	on- ctive
6		но	4	2.7	90.5	18
 7 ^a	он но он он		24	74.0	33.0 12.0	
8	HOHO	Но	1	9.3	64.3	170

Reaction conditions: substrate 1g, H_2O 4 g, $Ir-ReO_x/SiO_2$ 150 (a300) mg, 373 K, P_{H_2} = 8 MPa. aH_2SO_4 (H+/Re =1)

Ir-ReO_x/SiO₂上の様々な基質の水素化分解反応 J. Catal. 294, 171 (2012)

Entry	Substrate	Product	t/h	Conv. /%	Selec. /%	TOF / h ⁻¹	
1 團	Но	нолон	2 8	58.2 100	95.8 82.0	609 -	gnıy ctive
2 室	но	но	4	40.4	87.7	186	Lea Lea
3 05	HO	но	6	23.9	81.1	96	active
4		но	6	35.0	76.4	122	Z Ö
5	OH COH	но	6	0.0	0.0	0	on- ctive
6	$\langle \cdot \rangle$	но	4	2.7	90.5	18	rea N
 7 ^a		но Ir-ReO _x La	<mark>:H0-(</mark> 麦化-)-C-O-	構造中の	<mark>)C−0結</mark>	合
8	но			J.J	04.0	170	

Reaction conditions: substrate 1g, $H_2O 4$ g, $Ir-ReO_x/SiO_2 150$ (a300) mg, 373 K, $P_{H_2} = 8$ MPa. $^{a}H_2SO_4$ (H⁺/Re =1)

Ir-ReO_x触媒上の水素化分解反応キネティクス(水素圧依存性)

基質中構造HO-C-C-O-のC-C周りのコンフォメーション

従来型水素化分解反応機構

脱水+二重結合水素化 (アルコール) or 水素ラジカル(エーテル or アルコール)

> アルコール・エーテル両方に適応可能。水酸基と触媒との相互作用により ハイドライドの攻撃位置を制限し、高選択性を実現 反応

Hydrogenolysis of THFA, 1,2-PrD, and Glycerol

Hydrogenolysis activity order using these substrates tends to be similar. \rightarrow Rh-Re>Rh-Mo>Ir-Re Selectivity is strongly influenced by the number of OH groups. \rightarrow Ir-Re>Rh-Re>Rh-Mo 51

触媒特性と 構造の関係

Chem. Commun. 2009, J. Catal. 2009 Chem. Lett. 2009, Appl. Catal. B 2010 ChemCatChem 2010, J. Catal. 2010 ChemSusChem 2010, J. Catal. 2011 Appl. Catal. B 2011, Appl. Catal. B 2012

