X線発光分光による化学状態の評価

バルク分析法を用いたX線化学状態分析 ガラス・エネルギー・環境技術をフォローする非破壊状態分析技術

・2013年3月14日 ・大阪科学技術センターB101号室

二結晶X線分光器による精密状態分析 -手軽に状態分析を-

	プローブ	シグナル	特徵
(蛍光X線分析	X 線	X 線	占有軌道に関する情報。強度は軌道の 対称性に大きく依存する。
XANES	X 線	X 線	非占有軌道に関する情報。強度は軌道 の対称性に大きく依存する。
XPS	X 線	電子	占有軌道に関する情報。強度は軌道の 対称性にあまり依存しない。表面。

蛍光X線で何が分かるのか

・元素分析

幅広いエネルギー領域、高い分解能は不要

・<u>化学状態分析</u>

測定するエネルギー領域は広くない、高い分解能が必要 ⇒ 波長分散 ピークシフト・非対称性や半値幅の違いから化学結合状態を推測

ある種の物理過程についての情報

多重電離状態に起因するサテライトの相対強度から、シェイク過 程が起きる確率やCoster-Kronig yieldについての情報を得ること ができる。

分解能

装置関数の影響

2回のConvolutionによって半値幅が小さくなる。

半值幅:0.32 eV (3.6 arcsec)

T. Tochio et al., Phys. Rev. A65, 042502 (2002)

W.H.Zachariasenの動力学的回折理論 → 1945

杤尾氏らの(+,+)セッティングによる分解 能評価 → 2002

T. Tochio et al., Phys. Rev. A65, 042502 (2002)

2結晶分光器の特徴

◆2結晶分光装置の特徴 ⇒ バルクの状態分析装置である ◆非破壊測定ができる。

◇測定精度が高い。

◆超高真空が不要である。

◇絶縁物、溶液、生物試料でも測定が可能である。

◇分解能が試料の大きさによらない。

◇再現性、汎用性が高い。

なぜ普及しなかったか

Ti $K\alpha$ " satellite

Shake-off Process Probability

FIG. 1. Atomic excitation probabilities (%) from the various shells as the result of a sudden 1s vacancy production.

Mukoyama & Taniguchi, *PRA36*, 693 (1986)

Ti K α "サテライト

3pスペクテーターホールによるサテライト(Scottの計算)

 $K\alpha$ "サテライトのEvolution

*L*β_{2,3,15}の励起エネルギーに対する変化

Ohashi et al., PRA73, 022503

第3周期元素の状態分析(2結晶法)

Mg -・金属状態か2価かの判別

・酸化物の配位状態(4配位か6配位か)の判別

Al -・金属状態か3価かそれ以外の状態かの判別

- ・酸化物の配位状態(4,5,6配位)の判別
- ・隣接原子がC,N,O,Fのどれかである場合の識別*

Si -・金属状態か4価かそれ以外の状態かの判別

- ・酸化物の配位状態(4,6配位)の判別
- ・隣接原子がC,N,O,Fのどれかである場合の識別*

P, S, Cl ・酸化数の決定

・隣接原子がC,N,O,Fのどれかである場合の識別

3元系ガラスの評価(1結晶法)

装置は、Cameca microsonde 加速電圧:20KV,分光結晶:Mica

 1:1:2	Li2O.Al2O3.2SiO2 glass
 1:1:2.5	$Li_2O \cdot Al_2O_3 \cdot 2.5SiO_2$ glass
 1:1:4	$Li_2O \cdot Al_2O_3 \cdot 4SiO_2$ glass
 1:1:6	Li2O.Al2O3.6SiO2 glass
 SiO ₂	Fused SiO ₂ and quartz
 Si	Si metal

S. Sakka, Bull.Inst.Chem.Res., Kyoto Univ., 49, 349(1971)

S Kα_{1,2} スペクトル;

タバコ葉 (a)健康体 (b)ウィルス感染後

物質材料研究機構・福島整氏ご提供

茶葉中のS(硫黄)の状態分析の結果

Fe *K*α_{1,2} スペクトル

分析試料のCo Kaスペクトル

Liがx=1と0.5のCoKスペクトル変化から ・Ka₁及びKa,ともに低エネルギー側へシフト ・K α_1 及びK α_2 ともにシフト量はx=0.5の方が大きい Coは、いずれも3価か? 結合における3dの電荷密度が減っている

価電子帯の電荷密度に依存

結合における3dの電荷密度が減り Coのイオン結合性、原子間距離は?

X. Crの定量分析について ^{ラボとSPring-8での閾値励起法を用いた状態分析}

1)Tochio et al., Anal. Sci. 26, 277 (2019)
"X-ray fluorescence analysis of Cr⁶⁺
component in mixtures of Cr₂O₃ and K₂CrO₄"

•Cr⁶⁺共鳴吸収 → Cr⁶⁺のCr³⁺に対する吸収量増大
 •吸収スペクトル・・・・・価数の影響有り、配位環境の影響有り

クロム化合物の発光スペクトル($K\alpha$ 線)

クロム化合物の発光スペクトル($K\alpha$ 線)

発光スペクトルの 化合物依存性

•価数の影響有り

- ・配位環境の影響は微少
 →<u>多くの化合物に適用可</u>
- ・共鳴発光を用いることで 価数による差が拡大

□エネルギーシフト

□半值幅 □Kα,線

測定試料

混合比の変化による測定結果(線形性の確認)

 •K₂CrO₄とCr₂O₃を所定の原子数比で混合 Cr(VI)の原子数比28.1、20.7、8.9、4.2、2.0%に 混合した粉体試料を錠剤成型

ー定混合比でのCr総濃度による検出精度

•K₂CrO₄とCr₂O₃を原子数比1:9の割合で混合
 BNによりCr(VI)濃度を5000,1000,500,300ppmに
 希釈した粉体試料を錠剤成型

混合比と蛍光強度比の相関 蛍光強度比:f(Cr⁶⁺)/f(Cr³⁺) = μ[Cr⁶⁺]/[Cr³⁺] μ:Cr(III)に対するCr(VI)の比吸収断面積

励起エネルギーによらず混合比に対する線形性は示されている

Cr(VI)相対濃度10%試料での 混合比検出精度

測定時間30sec/pointsを見積もったときの検出結果 精度の基準として検出濃度の10%の誤差を目安とした

		非共鳴		共鳴	
総Cr濃度 [ppm]	Cr(VI)濃度 [ppm]	測定濃度 [ppm]	3 σ [ppm]	測定濃度 [ppm]	3 σ [ppm]
50000	5000	5000	± 230	5020	± 86
10000	1000	990	±87	1000	± 34
5000	500	500	±53	500	±24
3000	300	基準値以下		300	±21

- •濃度1000ppmでは共鳴・非共鳴共に基準を満たす
- •共鳴励起では非共鳴励起の倍以上の精度を得られた

非共鳴励起

Cr⁶⁺ 濃度500ppm(相対濃度10%)の試料
 をUncertainty±10%精度で検出
 →管球光源でもRoHS指令に対応可能

共鳴励起

・低濃度(~300ppm)、低含有比(~2%)で
 非共鳴の倍以上の検出精度
 →標準試料、溶出条件の検証に利用

部分蛍光法によるX線吸収分光

蛍光法によるX線吸収分光の原理図。一般に、入射エネルギーが1s電子を空準位に励起するエネル ギーに等しいとき、共鳴状態となり、吸収スペクトルに共鳴ピークとして現れる。左図は、通常の蛍光法 で1sの準位幅に相当する不確定性がスペクトルに畳み込まれるため、スペクトルの微細構造が不明瞭 になる。そこで、右図のように高分解能2結晶分光器を用いて分光された極狭いエネルギー範囲の蛍 光、Kα1の強度を用いた吸収スペクトルを測定した。W2を狭い狭いエネルギー範囲に固定した結果、 吸収スペクトルに畳み込まれる不確定性は、2p軌道の準位幅に抑えられることが分かる。

・部分蛍光XAFS・・・La1のピーク位置で分光結晶を固定して 励起エネルギーを変化させたときのIntensityの変化を測定。

Cuメタルにおける部分蛍光法と透過法によるX線吸収スペクトル

μt

CuOにおける部分蛍光法と透過法によるX線吸収スペクトル

μt

分光器開発の目的(2)

(注) d 値を高い精度で知る必要がある

まとめ: 2結晶分光器の特徴

◇2結晶分光装置の特徴 ⇒ バルクの状態分析装置である

◆非破壊測定ができる。

◇測定精度が高い。

◆超高真空が不要である。

◇絶縁物、溶液、生物試料でも測定が可能である。

◇分解能が試料の大きさによらない。

◆再現性、汎用性が高い。

是非、使ってみてください!