産業利用に役立つXAFSによる先端材料の局所状態解析2023

FDMNESを利用した高分解能 XANESの解析と実習

東京都立大学大学院理学研究科化学専攻

山添誠司・松山知樹

構造と機能

高機能化には構造と機能の関係の解明が必要

無機材料の構造を調べるには

・結晶構造をもつ材料

粉末X線回折, 単結晶X線回折

・アモルファス材料, 表面金属種, ドーパント

X線吸収分光法

X線吸収分光法(X-ray absorption spectroscopy, XAS) X線吸収微細構造(X-ray absorption fine structure, XAFS) X線のエネルギーを変えながら、試料による吸収量を測定する

XAFSスペクトル

XANES

EXAFS

XANES

X線吸収スペクトル

2023年3月10日 産業利用に役立つXAFSによる先端材料の局所状態解析2023

9

各元素のX線吸収エネルギー

H 0.01						元	素 〈										He 0.02
Li 0.05	Be 0.11					L1 L2					B 0.19	C 0.28	N 0.41	0 0.54	F 0.70	Ne 0.87	
Na 1.07	Mg 1.30					L	_3					Al 1.56	Si 1.83	P 2.14	S 2.47	CI 2.82	Ar 3.20
K 3.61	Ca 4.04	Sc 4.50	Ti 5.00	V 5.46	Cr 5.99	Mn 6.54	Fe 7.11	Co 7.71	Ni 8.33	Cu 8.98	Zn 9.66	Ga 10.4	Ge 11.1	As 11.9	Se 12.7	Br 13.5	Kr 14.3
Rb 15.2	Sr 16.1	Y 17.0	Zr 18.0	Nb 19.0	Mo 20.0	Tc 21.1	Ru 22.1	Rh 23.2	Pd 24.3	Ag 25.5	Cd 26.7	In 27.9	Sn 29.2	Sb 30.5	Te 31.8	І 33.2	Xe 34.6
Cs 36.0	Ba 37.4	La 38.9	Hf 65.3 11.3 10.7 9.56	Ta 67.4 11.7 11.1 10.2	W 69.5 12.1 11.5 10.5	Re 71.7 12.5 12.0 10.5	Os 73.9 12.7 12.4 10.9	lr 76.1 13.4 12.8 11.2	Pt 78.4 13.9 13.3 11.6	Au 80.7 14.3 13.7 11.9	Hg 83.1 14.8 14.2 12.3	TI 85.5 15.3 14.7 12.7	Pb 88.0 15.9 15.2 13.0	Bi 90.5 16.4 15.7 13.4	Po 93.1 16.9 16.2 13.8	At 95.7 17.5 16.8 14.2	Rn 98.4 18.1 17.3 14.6

*エネルギーの単位はkeV

XANES: 設種 (K, L₁, L₂, L₃) で得られる情報の違い

XANES:価数がスペクトルに及ぼす影響

X線吸収スペクトル

プレエッジピークと構造の対称性(WL₁端)

XANES: white lineの分裂と対称性

White lineの強度

HERFD-XASを用いた研究

高エネルギー分解能XAFSによる金属クラスターの 電子状態解析

J. Phys. Chem. C, 11, 750 (2021).

Metal cluster

change with a single atom difference.

Variety of metal clusters

XAFSによる金クラスターの電子状態解析

保護配位子が金クラスターの電子状態に及ぼす効果解明

HERFD法でのXAFS測定

High Energy Resolution Fluorescence Detection (HERFD)-XAS光学系

SPring-8 BL39XU HERFD-XAS用セットアップ

HERFD法の原理

Au L₃-edge XANES spectra

Au L₃-edge XANES spectra

ピーク分離解析

GaussianによるNBO電荷解析

Au 5dの占有率同じ⇒ピーク分離の結果と一致.

XANESシミュレーション

Finite Difference Method Near Edge Structure

(クラスター半径: 8.0Å, グリッド: 0.3eV, Ecut = 1.0 eV)

PDOS analysis

Ligand effect on electronic state of Au in clusters

表面チオラートの脱離挙動とAuの電子状態

実習: Au9クラスターのAu L₃端 HERFD-XANES計算

計算のポイントとinputファイルの記述

HERFD法のエネルギー分解能に合わせてシミュレーションする。
(とりわけ分子系において)電子状態を適切に調整する。

Cf. 計算に使用する 分子の構造

2023年3月10日

産業利用に役立つXAFSによる先端材料の局所状態解析2023

原子座標の記述

座標データの最初に"Molecule"と記す。 必要なデータ ① 格子定数(Å)、② 原子番号、③分率座標 (作成したCIFの座標データ)

2023年3月10日

産業利用に役立つXAFSによる先端材料の局所状態解析2023

計算結果

分子モデルの作成

計算モデルのしくみ

・計算のモデル構造は、単位胞の周期的配置で作成される
 ⇒分子も仮想的な単位胞に入れてモデルを構築する必要がある。

単位胞

イメージ作成: VESTA K. Momma and F. Izumi, J. Appl. Crystallogr., 44, 1272–1276 (2011).

作成手順

① CIFデータから必要な分子構造以外を削除する。

② XYZデータとして出力する。

③ VESTAでXYZデータを読み込み、CIFデータとして出力する。

仮想的な単位胞の作成

手順① CIFデータから必要な分子構造以外を削除する。 ・□アイコンを選択し、不要な構造を指定し、deleteキーで削除。 手順② XYZデータとして出力する。 a. [File] > [Export Data...]を選択し、XYZ file (*.xyz)にして保存。

b. "Do you want to save hidden atoms too?"は「いいえ」を選択。

[File] > [Export Data...]後の画面

🝰 Export Data	
← → ~ ↑ K → × ↑ K → × ↑	
整理 ▼ 新しいフォルダー	III - ?
() 3Dオブジェクト ^ 名前 ^	更新日時 種類
↓ ダウンロード 検索条件に一致する項目	はありません。
S Ľクチャ	
📓 टेन्ने 🗸 <	>
ファイル名(N): Au9(PPh3)8PMo12O40_CCDC690418.xyz	 ~
ファイルの種類(T): XYZ file (*.xyz)	~
▲ フォルダーの非表示 [保存(S) キャンセル .::
Option]
Do you want to save hidden atoms too?	「いいえ」 を選択
はい(Y) いいえ(N)	

仮想的な単位胞の作成

- 手順③ VESTAでXYZデータを読み込み、CIFデータとして出力する。 a. ドラッグ&ドロップでXYZデータを読み込む
- b. [File] > [Export Data...]を選択し、CIF file (*.xyz)にして保存。

XYZ読込後の画面

作成した単位胞の情報

・CIFデータをテキストエディタで開いてみる。
 ⇒単位胞は立方体。対称性はP1(空間群の情報は不要)
 ⇒原子位置は分率(内部)座標で表される。

1 2 3	↓ #=================================== # CRYSTAL DATA↓			=======‡	× == ^	
4 5 6	# data_VESTA_phase_1↓ ↓			¥		
7 8 9	_chemical_name_common _cell_length_a cell_length_b	°C144 H1 21.49144 21.49144	120 Au9 P8, I 16↓ 】_ 甫山	Mo12 O40 P'↓ ⊥ E	1	
10	_cell_length_c	21.49144	iõ↓ → → →	X		
12	_cell_angle_beta	90.00000	前, と 車中	伯度		
13	_cell_angle_gamma	90.00000) <u>o</u> ↓ _J ⊤ щ			
14	_Cell_volume snace group name H-M alt	'P 1'4)†			
16	space_group_IT_number	1↓ `				
17	↓ · · · · · · · · · · · · · · · · · · ·					
18	loop_↓ chace group cymon energtion yyzt					
20	'x. v. z'↓					
2ĭ	4					
22	loop_↓					
23	_atom_site_label↓					
25	_atom_site_occupancy⊽ atom_site_fract_x↓					
26	_atom_site_fract_y↓					
27	_atom_site_fract_z↓					
28	_atom_site_adp_type↓					
30	atom_site_v_isv_or_equiv↓					
31	Au1 1.0 0.500000	0.500000	0.490241	Uiso ? Au↓ ™		
32	Au2 1.0 0.612512	0.487516	0.540712	Uiso ? Au↓		百て位果
33	Au3 1.0 0.38/488	0.512484	0.540/12	Uiso ? Au↓ Uiso 2 Au↓		尽于凹亘
35	Au4 1.0 0.012404 Au5 1.0 0.487516	0.012012	0.540712	llisn ? ∆u⊥		(公亥広西)
36	Aug 1.0 0.572836	0.410958	0.444455	Uiso ? Au∔		(ガギ座标)

2023年3月10日

Q. 原子番号順に座標を出力したい

A. VESTAの出力設定で可能。

- a. ドラッグ&ドロップでCIFデータを読み込む
- b. [File] > [Export Data...]を選択し、P1 structure (*.p1) にして保存。

P1 structureファイルの中身

	Au9(PPh3)8PMo12O40_CCDC69	0418.p1 - 秀丸								_		×
	ファイル(F) 編集(E) 表示(V) 検索	≅(S) ウィンドウ(W) マクロ(M)	その他(O)									1:1
	📑 🗀 📲 🛜 🗀 🗦	< 😂 🔍 돶 📢	💷 🚍 🥹									
[1 C144 H120 Au9 P8, Mo12 2 1.0↓	2 O40 P↓										≪ :≡
	3 21.4914455414 4 0.000000000 5 0.000000000 6 Au P C H↓ 7 9 8 144 120↓	0.000000000 21.4914455414 0.000000000	0.000000000 0.000000000 21.4914455414		格子	定数	(軸長	E)				^
	9 9 10 0.500000000 10 0.612511992 11 0.387488008 12 0.512484014 13 0.487515986 14 0.572835982 15 0.427163988 15 0.500000000	0.50000000 0.487515986 0.512484014 0.612511992 0.387488008 0.410957992 0.589042008	0.490240991 Au1 0.540711999 Au2 0.540711999 Au3 0.540711999 Au4 0.540711999 Au4 0.540711999 Au5 0.444454998 Au6 0.444454998 Au7	(原子 降順の	番号 のみ)	000 000 000 000 000 000 000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	$0.00000 \\ 0.0000 \\ 0.0000 $	↓ 00000.0 ↓ 00000.0 ↓ 00000.0 ↓ 00000.0 ↓ 00000.0 ↓ 00000.0 ↓ 000000.0	
	16 0.303042000 17 0.410957992 18 0.690321028 19 0.309679002 	0.572653582 0.427163988 0.468638986 0.531360984 0.690321028	0.444454998 Au8 0.444454998 Au9 0.610071003 P1 0.610071003 P2 0.610071003 P3	1.00000 1.00000 1.00000 1.00000	0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	0.000000 0.00000 0.00000 0.00000 0.00000	
原子唑和 (分率)	一、4686388866 0.617955029 0.382045001 0.660291016 0.339709014 0.752584894	0.3096709012 0.339709014 0.660291016 0.617955029 0.382045001 0.421541989	0.8100/1003 P4 0.380380005 P5 0.380380005 P6 0.380380005 P7 0.380380005 P8 0.576584995 C1	1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000	$\begin{array}{c} 0.00000 \downarrow \\ 0.00000 \downarrow \end{array}$	
	27 0.247415006 28 0.578458011 29 0.421541889 30 0.741185009 31 0.258814991 32 0.635792017 33 0.364208013 34 0.788572013	0.578458011 0.752584994 0.247415006 0.364208013 0.635792017 0.741185009 0.258814991 0.326543987	0.576584995 C2 0.576584995 C3 0.576584995 C4 0.554175973 C5 0.554175973 C6 0.554175973 C7 0.554175973 C7 0.554175973 C8 0.533803999 C9	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.00000000	×
	29 0.421541889 30 0.741185009 31 0.258814991 32 0.364208013 33 0.788572017 33 0.788572013	0.247415006 0.364208013 0.635792017 0.741185009 0.258814991 0.326543987 次の結果 単語をコピー	0.5785849995 C4 0.554175973 C5 0.554175973 C6 0.554175973 C7 0.554175973 C7 0.554175973 C8 0.553803999 C9 - 分割シャント 切り抜	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 日末,日末	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0. 0. 0. 0. 0.	00000↓ 00000↓ 00000↓ 00000↓ 00000↓ 00000↓ 万天-

2023年3月10日

HERFD用の計算オプション

エネルギー分解能の指定

計算スペクトルのエネルギー分解能を支配するパラメータ ⇒Gamma_hole (Г_{hole})

実験スペクトルのエネルギー分解能⇒物質と光学系の両方に由来。 ①物質由来:内殻空孔寿命(自然幅,「)

2 光学系由来:入射光、分光結晶の配置、分光結晶の出来、など

エネルギー分解能を求める方法 ① 測定時のXESスペクトル:物質と光学系の情報を両方持つ。 ② 内殻空孔寿命を参考に手動で調整(XESスペクトルがない時)。 Cf. 内殻空孔寿命の文献 J. L. Campbell and T. Papp, At. Data Nucl. Data Tables, 77 1–56 (2001).

※ Demeterの"Hephaestus"というソフトウェアでも参照可能。

今回の実習ではGamma_holeを2.0に設定します。

フェルミ準位の指定

電子占有状態を指定するパラメーター ⇒E_cut

計算から推定されるフェルミ準位を"任意"にずらす。

計算条件: レンジ(eV) -10.0 – 40.0 ステップ(eV): 0.3 クラスター半径(Å): 8.0 相対論効果あり FullPotential 「_{hole}(eV): 2.0

T. Matsuyama et al., J. Phys. Chem. C, 125, 3143–3149 (2021).

2023年3月10日

フェルミ準位の指定

Q. 自己無撞着に計算されたフェルミ準位を任意に変えてよいか? A. 開発者曰く、"まばらな構造では、1-5 eVの範囲で許容"。

We note that the automatic setting of the Fermi level is a very convenient and user-friendly feature of the self-consistent calculation. For the codes where this is not the case, the Fermi level is set ad hoc and thus the elimination of occupied states according to (8) is spurious. In the case of sparse structures (as one will see in section 5) the calculated Fermi level and the cutoff of the absorption spectrum may differ; nevertheless the former still gives valuable information (within $\approx 1-5$ eV).

分子系のよう なまばらな構 造

O. Bunău and Y. Joly, J. Phys.: Condens. Matter., 21, 345501–345511 (2009).

とは言え、フェルミ準位の変更は慎重に行った方が良い。 Ex.フェルミ準位近傍を一通り計算し、すべての結果を示した上で、実験に合 うスペクトルを尤も確からしい電子状態として提案する。

相対論効果の導入

【金はなぜ金色なの?】 相対論効果 Relativistic Effects

https://www.chem-station.com/chemglossary/2020/10/relativistic-effects.html (参照: 2023年3月7日)

重原子では内殻電子の運動量が大きくなり、特異な物性が発現

開発者は、原子番号>36の重原子で相対論的計算を推奨している。

1) Relativistic calculation

By default, simulations are non-relativistic, without spin-orbit and non-magnetic for the valence and conduction band states (but relativistic with spin-orbit for core states). For heavy atoms (say Z > 36), in the structure, including when they are not absorbing atoms, it is recommended to make a relativist calculation using the keyword:

Relativism

Y. Joly, FDMNES User's Guide 2023 p.33

相対論効果によるスペクトルの変化

相対論効果を取り入れて計算する場合

⇒ Relativism

Au箔のHERFD-XANES計算例

XANES形状は相対論効果の導入で大きく改善。

出カオプション

サイト毎のスペクトルの出力

プログラム中で非等価に扱われた吸収原子のXANESスペクトルの出力 ⇒ Conv_all

サイト毎の部分状態密度の出力

クラスター半径中の全原子の部分状態密度(PDOS)の出力

2023年3月10日 産業利用に役立つXAFSによる先端材料の局所状態解析2023

11920

11925

Photon energy (eV)

11930

11935

補足資料

Q. 元構造とはどれくらい異なる?

A. 単位胞のサイズは、自動で計算される。

計算時のクラスター半径においては、分子間距離の伸長は問題ない。

Q.計算に必要な半径は、吸収端原子が全て含まれていれば十分か? A.実験データとの明確な相違はない。半径が大きいほど精度が良い。

2023年3月10日

ポテンシャル形状の影響

Q. マフィンティン(MT)近似とフルポテンシャル(FP)での変化は? A. 実験データにない吸収ピークが生じるが、再現度は悪くない。

ポテンシャル形状を変えたHERFDXANES計算

フェルミ準位の推定が甘いので、電子状態は手動で補正する。

最適化構造を外挿した場合の結果

FDMNESには、計算モデルを構造最適化する機能が備わっていない モデル構造の利用には、別のソフトウェアが必要。

(例) Gaussian 09プログラムでの構造最適化 計算方法: DFT(B3LYP), 基底関数: LanL2DZ (Au) / 6-31G(d) (C, H, P)

2023年3月10日

Q. 最適化構造でもXANESスペクトルは再現できるか? A. 実験データにない吸収ピークが生じ、再現性は悪い。

最適化したAu9クラスターのHERFDXANES計算

構造の膨張→プログラムで推定される電子占有状態がおかしい。 解決策:①手動でのフェルミ準位の調整、②電子占有状態の外挿

2023年3月10日

計算時間とLinux計算機の性能

Au9クラスターのAu L₃端HERFD-XANES計算の所要時間:

20 h 18 min 19 s CPU

計算条件: レンジ(eV): -10.0 – 40.0, ステップ(eV): 0.3 クラスター半径(Å): 8.0 相対論効果あり、FullPotential

計算で使用したワークステーションのスペック

CPU	Intel(R) Xeon(R) CPU E5-1660 v4 8コア, 定格3.20GHz, Turbo時3.80GHz
メモリ	64GB
グラフィック	GeForce 210

Linux計算機での計算準備

必要なソフトウェア

fdmnes_Linux64

Linux版FDMNESプログラム

URL: <u>https://fdmnes.neel.cnrs.fr/download/</u>

parallel_fdmnes

MPIによる並列計算用パッケージ

URL: https://fdmnes.neel.cnrs.fr/download/

fdmnes Windows 64
fdmnes Windows 32
fdmnes Mac OS
<u>fdmnes Linux 64</u>

The linux executable parallelized under MPI can also be downloaded:

parallel fdmnes

あると便利なソフトウェア

Tera Term

Linux上にあるインプットファイルを計算させるなどの命令をリモート で行う。

URL: https://ja.osdn.net/projects/ttssh2/releases/

WinSCP

Windows⇔Linux間のファイル転送を行う。 URL: <u>https://winscp.net/eng/download.php</u>

Tera Termの設定

① ソフトを起動

Tera Term: 新しい接続		×
● TCP/IP	ホスト(T): <mark>10.1.70.60</mark> 「ビヒストリ(O) サービス: O Telnet TCPポート#(P): 22 ● SSH SSHバージョン(V): SSH2 ○ その他 IPバージョン(N): AUTO	 <
○シリアル(E)	ポート(R):	\sim
	OK キャンセル ヘルプ(H)	

・ホスト(O)に固定IP (または物理アドレス)を入力。 ・サービスはSSH2を選択。 入力したらOKを押す。

Tera Termの設定

② Linuxアカウントへのログイン

🔳 10.1.70.60 - Tera Term VT			\times
ファイル(F) 編集(E) 設定(S) コントロール(O) ウィンドウ(W) ヘルプ(H)			
SSH認証 —		×	^
ログイン中: 10.1.70.60			
認証が必要です。			
ユーザ名(N): 🛛 📘 🔍			
バスフレーズ(P):			
✓パスワードをメモリ上に記憶する(M)			
□ エージェント転送する(0)			
認証方式			
・ プレインバスワードを使う(L)			
○ RSA/DSA/ECDSA/ED25519鍵を使う			
秘密鏈(K):			
○ rhosts(SSH1)を使う			
ローカルのユーサ名(U):			
ホスト鍵(F):			
○ キーボードインタラクティブ認証を使う(1)			
○ Pageantを使う			
ОК	接続断	(D)	

・ユーザー名(N)に、ログインするアカウント名 ・パスフレーズ(P)に、パスワード 入力したらOKを押す。

2023年3月10日

WinSCPの設定

①ソフトを起動

🔒 ログイン		- 🗆 X
 ○ 新しいサイト ○ Administrator@10.1.69.18 ○ yamazoe@10.1.69.17 	セッション 転送プロトコル(E) SFTP ホスト名(H) 10.1.69.17 ユーザ名(U) yamazoe 編集(E)	ポート番号(<u>R</u>) 22 パスワード(<u>P</u>) ●●●●●●●● 設定(<u>P</u>)…
()/−11/(T) ▼ 管理/	M) ▼	問!!!る ヘルプ(H)

・(H)に固定IP (または物理アドレス) ・ポート番号(R)に22

・ユーザー名(U)にLinuxでログインするアカウント名 ・パスワード(P)にパスワード を入力し、ログインボタンを押す。

2023年3月10日

fdmnes_Linux64のインストール

手順

- a. ダウンロードした"fdmnes_Linux_20XX_YY_ZZ.zip"を解凍する。
- b. WinSCPでLinux内の適当な場所に"fdmnes"フォルダを作成。
- c. 解凍した中身全てを、fdmnesフォルダに転送する。

※Linuxのターミナル or Tera Termからインストールする手順

- a. mkdir fdmnesとコマンドしフォルダ作成。cd fdmnesで中に移動する。
- c. unzip fdmnes_20XX_YY_ZZ.zip とコマンドして解凍する。

手順

a. ダウンロードした"parallel_fdmnes_20XX_YY_ZZ.tar.gz"を、fdmnesディ レクトリに転送する。

※Linuxのターミナル or Tera Termからインストールする手順

- a. cd ..とコマンドし、fdmnesディレクトリに戻る。
- b. wget <u>https://cloud.neel.cnrs.fr/index.php/s/QBqZ4HcKBWjfYdS</u>とコマンド。

手順

b. Tera Termを起動する。

c. cdコマンドを使って、fdmnesディレクトリまで移動する。 ※移動先のディレクトリ名が分からないときは、ls-lとコマンドする。 現在地に存在するディレクトリとファイルが一覧で表示される。

移動例

10.1.7	0.60 - gaus	sian@Yar	mazoe_calo	:PC2:~	/Desktop/m	atsuyama/fdi	mn VT		—		\times
ファイル(F)	編集(E)	設定(S)	コントロール	(O)	ウィンドウ(W)	ヘルプ(H)					
last loa Igaussia	sin: Sur an@Yamaz	n Mar :ce_cal	5 16:23 IcPC2 ~_	3:28]\$ co	2023 <mark> Desktop</mark>	/matsuya	ma/fdmnes				^
gaussia	an@Yamaz	:oe_cal	lcPC2 fa	Imnes	;]\$ []	Î	📕 fd 🔹 🚰 🔹 🚺	▼ ・ 〒 7		プロパティ	" ← ~ "
								Desktop/ma	tsuyama/fo	dmnes/	
							🔁 📕 fdmnes_Linux				
							parallel_fdmn	es_2022_06_	15.tar.gz		

WinSCPでLinux側のアドレスバーを参考に移動する。 階層が多段階の場合は、"/"で連続移動できる。

手順 c. "Is -I"とコマンド。 d. "tar zxvf parallel fdmnes-tar.gz"とコマンドし、解凍する。

コマンドしてEnterを押すと、解凍ファイ ルの一覧が表示される。

I0.1.70.60 - gaussian@Yamazoe_calcPC2:~/Desktop/matsuyama/fdmn VT 編集(E) 設定(S) コントロール(O) ウィンドウ(W) ヘルプ(H) parallel_fdmnes/mpirt/bin/ia32/mpdrun parallel_fdmnes/mpirt/lib/intel64/ parallel_fdmnes/mpirt/lib/intel64/li<u>bmpi.so.12.0</u> parallel_fdmnes/mpirt/lib/intel64/libmpifort.so.12 parallel_fdmnes/mpirt/lib/intel64/libmpifort.so parallel_fdmnes/mpirt/lib/intel64/libmpi.so.12 parallel_fdmnes/mpirt/lib/intel64/libmpi.so parallel_fdmnes/mpirt/lib/intel64/libmpifort.so.12.0 parallel fdmnes/mpirt/lib/mic/ parallel_fdmnes/mpirt/lib/mic/libmpi_mt.so.4.1 parallel_fdmnes/mpirt/lib/mic/li<u>bmpi_mt.so</u> parallel_fdmnes/mpirt/lib/mic/libmpi_mt.so.5 parallel_fdmnes/mpirt/lib/mic/libmpi_mt.so.12 parallel_fdmnes/mpirt/lib/mic/libmpi_mt.so.4 parallel_fdmnes/mpirt/lib/mic/libmpi_mt.so.4.0 parallel_fdmnes/mpirt/lib/mic/libmpi_mt.so.5.0 parallel_fdmnes/mpirt/lib/mic/libmpi_mt.so.12.0 parallel_fdmnes/mpirt/lib/ia32/ parallel fdmnes/mpirt/lib/ia32/libmpi mt.so.4.1 parallel_fdmnes/mpirt/lib/ia32/libmpi_mt.so parallel_fdmnes/mpirt/lib/ia32/libmpi_mt.so.4 parallel fdmpes/mpirt/lib/ia32/libmpi_mt_so_4_0 [gaussian@Yamazoe_calcPC2 fdmnes]\$

コマンド待ち状態になったら解凍完了。

手順

e. WinSCPで、解凍された"parallel_fdmnes" ファイルの中身だけ、 全て"fdmnes_Linux64"に移動する。

※Linuxのターミナル or Tera Termから移動する手順 a. mv parallel_fdmnes/* fdmnes_Linuxとコマンド。

fdmnes_Linux64への実行権限付与

手順

a. Tera Termに戻り、fdmnes_Linuxディレクトリ内に移動。 先ほどの操作後の現在地は、fdmnesディレクトリのはず。 cd fdmnes_Linuxとコマンドして中に移動する。

fdmnes_Linux64への実行権限付与

手順

- b. Is レコマンドする。
 - 現状は、fdmnes_Linux64の表示は白色。
- c. chmod +x fdmnes_linux64とコマンドする。
- d. 再び、ls -l とコマンドする。

fdmnes_Linux64の表示が緑色になっていたら権限付与成功。

📕 10.1.70.60 - gaussian@Yamazoe_calcPC2:~/Desktop/matsuyama/fdmn VT 🛛 🗖 🛛 🗡	10.1.70.60 - gaussian@Yamazoe_calcPC2:~/Desktop/matsuyama/fdmn VT
ファイル(F) 編集(E) 設定(S) コントロール(O) ウィンドウ(W) ヘルプ(H)	ファイル(F) 編集(E) 設定(S) コントロール(O) ウィンドウ(W) ヘルプ(H)
Image: Start of the second	drwxr=xr=x 2 gaussian users 4096 Mar 8 09:39 Doc ^ -rwwr=r=r=1 gaussian users 1195 Mar 8 09:38 fdmfile.txt -rwwr=r=r=1 gaussian users 37619504 Mar 8 09:38 fdmnes_linux64 -rwxr=xr=x 1 gaussian users 38181792 Jul 5 2022 fdmnes_mpi_linux64 drwxr=xr=x 4 gaussian users 4096 May 7 2015 mpirt -rwxr=xr=x 1 gaussian users 218 May 22 2019 mpirt -rwxr=xr=x 1 gaussian users 390 Jan 30 2018 readme.txt -rw=r=r=r=1 gaussian users 63 Mar 8 09:38 rum_fdmnes.command drwxr=xr=x 3 gaussian users 4096 Mar 8 09:39 Sim [gaussian@Vamazoe_calcPC2 fdmnes_linux]\$ chmod +x fdmnes_linux64
-rw-rr1 gaussian users 1195 Mar 8 09:38 fdmfile.txt -rw-rr1 gaussian users 37619504 Mar 8 09:38 fdmnes_linux64 -rwxr-xr-x1 gaussian users 38181792 Jul 5 2022 fdmnes_mpi_linux64 drwxr-x4 gaussian users 4096 May 7 2015 mpirt	Lgaussian@Yamazoe_calcPC2_fdmnes_Linux_]\$ Is -1 total 74056 drwxr-xr-x 2_gaussian_users 4096 Mar 8_09:39 Doc -rw-rr1_gaussian_users 1195 Mar 8_00:38 fdmfile.txt -rw-range 88 fdmnes_Linux64
-rw-rr1 gaussian users 390 Jan 30 2018 readme.txt -rw-rr1 gaussian users 63 Mar 8 09:38 run_fdmnes.command drwxr-xr-x 3 gaussian users 4096 Mar 8 09:39 Sim [gaussian@Yamazoe_calcPC2 fdmnes_Linux.]\$ chmod +x fdmnes_linux64]	-rwxr=xr=x 1 gaussian users 38181792 Jul 5 2022 fdmnes_mpi_linux64 drwxr=x=== 4 gaussian users 4096 May 7 2015 mpirt =rwxr=xr=x 1 gaussian users 218 May 22 2019 mpirun_fdmnes =rw=r==== 1 gaussian users 390 Jan 30 2018 readme.txt =rw=r==== 1 gaussian users 63 Mar 8 09:38 run_fdmnes.command drwxr=xr=x 3 gaussian users 4096 Mar 8 09:39 Sim

Enterを押すと、fdmnes_Linux64 の表示が緑色になる。(実行権限付与)

2023年3月10日
計算準備

手順

b. Is - レコマンドする。

現状は、fdmnes_Linux64の表示は白色。

- c. chmod +x fdmnes_linux64とコマンドする。
- d. 再び、ls-lとコマンドする。

fdmnes_Linux64の表示が緑色になっていたら権限付与成功。

実習: Au箔のHERFD-XANES計算

2023年3月10日 産業利用に役立つXAFSによる先端材料の局所状態解析2023

計算結果

2023年3月10日

産業利用に役立つXAFSによる先端材料の局所状態解析2023