

XMCDの理論計算

•Zeeman ハミルトニア	ン(外部磁場)	
$H_{\text{Zeeman}} = \boldsymbol{\mu} \cdot \boldsymbol{B} =$ $\langle \Phi_p H_{\text{Zeeman}} \Phi_q \rangle = \mu_B \sum_{i,j=1}^{N_{\text{orb}}}$	$= \mu_B(L+2S) \cdot B$ $\gamma_{ij}^{pq} \langle \phi_i (l+2s) \phi_j \rangle \cdot B$	\boldsymbol{B} : magnetic flux density $\mu_{\rm B}$: Bohr magneton $\boldsymbol{\Phi}_{\rm p}$: Slater determinant $\boldsymbol{\phi}_i$: relativistic MO
• Heisenberg ハミルトニアン(磁気モーメント間の交換相互作用) $H_{ ext{ex}} = rac{1}{2} \sum_{i eq j} J_{ij} S_i \cdot S_j$		
J _{ij} 交換相互作用パラメータの第一原理計算は困難 ・DFT 計算 交換相関エネルギーの誤差 ・CASCI計算 大規模モデルでの計算は膨大な時間が掛かる		
$egin{aligned} H_{ ext{ex}} &pprox \mu_B oldsymbol{B}_m\ oldsymbol{B}_{ ext{eff}} &= oldsymbol{B} + oldsymbol{B}_m \end{aligned}$	平均場近似を用いて、有効磁場 <i>B</i> eff を導入 XMCDの強度を再現する様に調節する	

Theoretical Calculation of XMCD

850

840

860

Energy (eV)

870

880

Niは+2価でBサイト(6配位)を占有

Photon Energy (eV)

Eur. Phys. J. Special Topics 169, 175 (2009).

*M.C. Richter et al.,

740

XMCD x 10

720

725

730

B-site

Photon Energy (eV)

Eur. Phys. J. Special Topics 169, 175 (2009).

715

710

*M.C. Richter et al.,

705

A-site

720

Energy (eV)

0.04

-0.04

-0.06

700

710

 $m_{\rm A} / B_{\rm eff}$

 $m_{\rm B} /\!\!/ B_{\rm eff}$

 $B_{eff}^{A} = 10T$

730

B-site B_{eff}^B = 15T

