2019B1683

BL25SU

走査型軟 X 線 MCD 顕微鏡によるハードディスク記録ヘッドの 高速磁化過程直接観察 Direct Observation of Ultra-fast Magnetization Process of a Hard Disk Write-head

by Using a Scanning Soft X-ray Magnetic Circular Dichroism Microscope

<u>喜々津 哲</u>^a, 首藤 浩文^a, 前田 知幸^a, 岡本 聡^b, 菊池 伸明^b, 小谷 佳範^c, 大沢 仁志^c, 中村 哲也^c <u>Akira Kikitsu^a</u>, Hirofumi Suto^a, Tomoyuki Maeda^a, Satoshi Okamoto^b, Nobuaki Kikuchi^b, Yoshinori Kotani^c, Hitoshi Osawa^c, Tetsuya Nakamura^c

> ^a(株)東芝、^b東北大学、(公財)高輝度光科学研究センター ^aToshiba Corp., ^bTohoku University, ^cJASRI

市販のハードディスクの記録ヘッドをパルス電流駆動し、数μmのサイズの磁極部分における、 sub-nsecの時間的な磁化状態の変化を軟X線ナノMCD(Magnetic Circular Dichroism)を用いて観察 することに成功した。準動的な計測かシミュレーションで推定するだけであった磁化状態変化を 世界で初めて直接観察することができた。ヘッド駆動を RF バンチクロックと同期させることで ストロボスコピック観察を行い、空間分解能 100 nm、時間分解能 50 ps を得た。駆動電流に遅れ て磁化が変化する状況などがわかり、今後の高性能化・高密度化開発へ大きく貢献できる結果が 得られた。

キーワード: ハードディスク、記録ヘッド、磁区観察、軟 X線 MCD

背景と研究目的:

ハードディスク(HDD)の記録ヘッドにおける記録過程は、ナノメートルサイズの領域の磁化がナノ 秒の時間スケールで反転する微細かつ高速な物理過程である[1]。励磁コイルによる起磁力でまず微細 な磁極先端部で磁化反転が起こり、その後周辺の磁気シールド部に反転が伝播すると考えられている。 この磁化反転過程は HDD の記録磁区形状に直接影響を及ぼすため、状況を詳細に把握することは極 めて重要である。しかしながら、対象が微細領域であり、かつ時間領域が高速であり、しかも最大 1 T 程度の磁界が発生する環境下での現象であるため、これを直接観察することは困難である。これま では、記録磁極の静的/準動的な磁化観察から推定するか[2]、有限要素法や動的磁化シミュレーション [3] によるのみであった。しかしながら、近年の HDD の高密度化に伴い、磁化反転の遅れや伝播とい った高速磁化過程が記録特性に及ぼす影響が大きくなっており、また、次世代記録技術として検討さ れている高周波アシスト記録[4]では動的磁化過程を直接利用するため、磁化過程の直接間接の重要性 はさらに増している。

そこで、軟X線ナノXMCD(X-ray Magnetic Circular Dichroism)を利用して、HDD 記録ヘッドの磁極 およびシールド部の磁化反転過程の観察を試みた。実際の記録過程における磁化状態を観察するため に、ヘッドが駆動している状態で観測を行うことを目標とした。これは従来にない挑戦的な試みであ る。微細な磁性体の高速磁化過程の観察としてはこれまでにも報告されているが[5]、これらは磁性体 の発振や歳差運動といった自発的な単調な振動現象の観察が主であり、観察できる磁化反転過程には 限りがあった。一方、今回の実験は、人為的な周波数・パターンで、観察対象に任意のタイミングで 磁化反転を起こすところに特徴がある。今回試みる記録ヘッドの高速磁化過程の直接観察ができるこ とによって、例えば、記録ヘッドの微細構造や励磁電流パターンの最適化が可能となり、HDD の高密 度化に大きく貢献することが期待される

実験:

観察には、空間分解能約100nm での磁化イメージングが可能な BL25SU のナノ XMCD 装置を用いた。X線吸収の測定には、サンプルに駆動電圧を印加することが可能な、高次光制限アパーチャーを

利用した電子収量法を採用した。ナノ XMCD 装置の測定チャンバー内に記録ヘッドサンプルを設置 し、チャンバー外からフランジを介してヘッドに高周波ケーブルを接続し、外部のパルス電源から駆 動電流を印加した状態で観察を行った。ヘッドサンプルを設置した状態での到達真空度は 2x10⁷Pa 程 度であった。

測定系のブロック図を図1上部に示す。RF バンチクロックに駆動電流のタイミングを同期させる ことで、42.4 MHz で繰り返し同じ記録過程の測定を行えるようにした。そして、駆動電流タイミング を所望の値でディレイさせることで、設定したディレイ分だけ遅れたタイミングでの磁化状態を観察 する。ディレイ時間を少しづつずらしていくことで、磁化状態の時間変化をサブナノ秒の時間分解能 でストロボスコピックに観察できることになる。RF バンチクロックと駆動電流パルスのオシロスコ ープ観察画面を図1下部に示す。RF バンチクロックに対する駆動電流のタイミングジッタは1σで3 ps 程度であり、測定の最小時間刻み 50 ps に対して十分小さいことがわかった。

測定時には、サンプルホルダーや通電ユニット等からコンタミが発生し、観察部位にCとして堆積 する問題が起こる。そこでこれを除去するために、Arイオンエッチングによるサンプル観察部位のク リーニングを適宜実施した。この処理によりチャンバ全体の真空度もさらに向上し、コンタミをより 防止できることも分かった。また、サンプル駆動回路の発熱による若干のドリフトが観察中に発生し たが、1~数時間のプレヒート動作をさせた後で観察実験を行うことでその影響を小さくするように 試みた。

観察で得られた磁区像のコントラスト強度から磁化量を推定できるように、測定系を超電導マグネ ット内に移動させて飽和磁化させた場合の XMCD 像の観察も行った。この測定で得られた飽和レベ ルでの XMCD 強度を用いて、磁区像のコントラストに定量性を与えることができた。

図1 測定系のブロック図と駆動電流パルス波形

結果および考察:

観察結果を図2に示す。FeのXMCD像を各ディレイ時間に沿って観察したものである。左上に観察部位のFe吸収像を示す。台形状の磁極の下部にシールド部が設けられている構造である。磁極はFeが主成分で、シールド分はCoリッチのCoFe合金である。中央部にXMCD像を示す。赤ー青のカラースケールは紙面垂直方向の磁化成分を示す。図中に記した数字はRFバンチクロックに対するディレイ時間である。図の一部に太枠で囲って示されている像は磁極部分を高空間分解能撮像したものである。電流で駆動させている磁極およびその周辺部の磁区構造をこのように高時間分解能で観察した例はこれまでになく、世界で初めて得られた成果である。

図から明らかなように、磁極部分の磁化が 1.77 ns あたりで反転していることがわかる。また、磁極 部分の磁化反転に伴ってシールド部分にも磁区が形成され、その大きさと向きが時間と共に変化して いることもわかる。シールド部分の磁区構造については Co の XMCD 観察でも同様なものが確認され、ノイズやアーティファクトではない磁区構造であることが確認された。微細磁区構造の生成や変化していく過程の詳細については得られたデータを基に今後検討していく予定である。

磁化量の時間変化を見積もるために、磁極部分の XMCD コントラスト強度の面積分値を求め、それを時間とともにプロットしたのが上中央部に示したグラフである。時間と共にリニアに磁化が変化していることがわかった。この時の駆動電流はヘッドの磁化が飽和する 35 mA まで 100 ps 程度で立ち上がるように設定されている。これに対し、磁極の磁化は駆動電流よりも遅く 500 ps ほどで変化していることがわかった。このような磁化変化の遅れはシミュレーションで予想はされていたが、遅れの大きさ、および磁化変化の過程は今回初めて実験的に得られた知見である。この結果を基に、駆動電流の立ち上がりを 500 ps と遅くした測定を行ったところ、磁化変化も 500 ps で追従することがわかった。以上のことから、この記録ヘッドの磁極部分の磁化は 500 ps 程度の立ち上がり速度を持っていることがわかった。

以上、世界で初めてとなる、HDD 記録ヘッド部の駆動電流印加時のナノスケール磁区の動的観察に 成功した。磁極部の磁化の立ち上がり時間については今回初めて分かった知見であり、今後の HDD ヘ ッドの開発に大きく寄与できるものと期待される。

図2 観察した磁区像の時間変化。(左上図)Fe吸収像による全体構成像。(上図)観察像から求めた 磁化量の時間変化。

今後の課題:

今回の観察においては、サンプルのドリフトがあったため、XMCD 撮影時にも像がわずかに動き、 差分処理によって得られる XMCD 像の空間分解能を劣化させる要因になっている。これについては、 得られた像の空間補完を行うなどして、より詳細な XMCD 像を得る検討を行う予定である。また、ド リフトの少ないサンプルホルダの設計も必要であると思われる。

謝辞:

本研究では、元素戦略プロジェクト<磁性材料研究拠点>で開発されたナノ XMCD 装置を利用しました。

参考文献:

[1] 中村慶久 他、垂直磁気記録の最新技術、シーエムシー出版、東京、2007、第3章

- [2] J. Einsle et al., Nano Research, 8, 1241 (2015)
- [3] S. Song et al., IEEE Trans. Magn., 45, 3730 (2009)
- [4] J.-G. Zhu et al., IEEE Trans. Magn., 44, 125 (2008)
- [5] N. Kikuchi et al., J. Appl. Phys., 126, 083908 (2019)