2019B1894

BL46XU

ペロブスカイト/有機半導体界面の埋もれた電子状態の解明 Buried Electronic States of the Perovskite / Organic Semiconductor Interface

<u>丹羽 秀治</u>^a, 守友 浩^a, 古宮 良一^{b,c}, Islam Ashraful^c Hideharu Niwa^a, Yutaka Moritomo^a, Ryoichi Komiya^{b,c}, Islam Ashraful^c

^a筑波大学数理物質系,^b日本ゼオン(株),^c物質・材料研究機構 ^aUniversity of Tsukuba, ^bZEON Corporation, ^cNIMS

ペロブスカイト太陽電池の界面電子状態を解明することを目的として、硬X線光電子分光法を 用いて、有機半導体正孔輸送層に接するペロブスカイト層側の埋もれた界面を調べた。Pb 4f HAXPES スペクトルから、Pb 系ペロブスカイトでは、分解能の範囲内でピークシフトは観測され ず、界面におけるペロブスカイト層の電子状態変化(バンドベンディング)が極めて小さいこと が示唆された。

キーワード: 太陽電池、ペロブスカイト太陽電池、硬 X 線光電子分光

背景と研究目的:

ペロブスカイト太陽電池は20%以上の高いエネルギー変換効率を示し、次世代の太陽電池材料とし て期待されている[1,2]。特に、シリコン系太陽電池よりも低価格でフレキシブルなデバイス作成が可 能等の長所を有する。現在最も研究されている材料は、ハロゲン化鉛ペロブスカイト(MAPbI₃)であ る。しかしながら有害な Pb を含むため、安全面では課題がある。この問題を解決するために、Pb フ リーなペロブスカイト材料であるハロゲン化スズペロブスカイト(FASnI₃)の開発も推進されている [3]。

ペロブスカイト太陽電池では、ペロブスカイト層を光励起すると電荷(電子と正孔)が発生する。 電子は電子輸送層(TiO₂)に、正孔は正孔輸送層(有機半導体)へ移動する。高効率な電荷分離を実 現するためには、ペロブスカイト層と正孔(電子)輸送層との界面状態の理解は極めて重要である。 開放端電圧やエネルギー変換効率を決める要因である界面電子状態を解明することにより、高効率ペ ロブスカイト太陽電池の実現のための知見が得られる。電子、正孔輸送層単体の界面電子状態状態の 報告はあるが、電子、正孔輸送層に接するペロブスカイト層の界面電子状態の報告例は極めて少ない。 今回は、ペロブスカイトと HOMO レベルが大きく離れた P3HT、F8BT、PFB(図1)の有機半導体を選択 した。

本課題では、検出深さが深い硬X線光電子分光法(HAXPES)を用いて、有機半導体正孔輸送層に 接するペロブスカイト層側の埋もれた電子状態を明らかにすることを目的とした。最も研究されてい る Pb 系に加えて、有害性の低い Sn 系ペロブスカイトについて測定を行った。

実験:

Pb 系ペロブスカイト (MAPbI₃) は 4 種類測定した。MAPbI₃ 単体及び、MAPbI₃ 上にスピンコート 法で 3 種類の有機半導体薄膜 (P3HT、F8BT、PFB) をそれぞれ約 20 nm 程度塗布したものである。

また、Sn 系ペロブスカイト(FASnI₃)を2種類測定した。FASnI₃単体及び、FASnI₃上にスピンコート法で有機半導体薄膜(PFB)を約20nm塗布したものである。

HAXPES 測定は、SPring-8 の BL46XU で行った。入射光 X 線エネルギーは 7940 eV、パスエネルギーは 200 で、エネルギーの校正は Au の E_F 及び 4f を用いた。有機半導体側から射入射で X 線を照射し、TOA = 85°及び 30°で Pb 4f, Sn 3d, I 3d 内殻スペクトルを取得した。

結果および考察:

これまでの測定で、試料によっては明らかなチャージアップやダメージが観測されていたため、は じめにビーム照射による経時的なスペクトル変化が起こらない条件を探索した。50 µm の Al 箔 3 枚を アッテネーターとして使用し、入射光強度を約 13.5%に減衰させた条件でスペクトルに経時変化がないことを確認し、HAXPES 測定を行った。

ペロブスカイト太陽電池に用いられるペロブスカイト(MAPbI₃)と正孔/電子輸送層として用いら れる有機半導体界面の電子状態を測定した。MAPbI₃単体のペロブスカイトと、有機半導体を載せたペ ロブスカイト試料の Pb 4f HAXPES スペクトルでは、分解能の範囲内でピークシフトがないことが明 らかになった(図 2)。2019A 期の測定では Pb 4f スペクトルにピークシフトが観測されていたが、チ ャージアップもしくはビームダメージによるものであったと考えられる。また、I 3d スペクトルも分 解能の範囲内でピークシフトは観測されず、TOA の違いによる差も見られなかった。これは、有機半 導体/ペロブスカイト界面のペロブスカイト層側の電子状態変化(バンドベンディング)が極めて小さ いことを示唆している。

一方、Sn 系ペロブスカイト(FASnI₃)の HAXPES 測定から、Sn 3d スペクトルにおいてダブルピー クが観測された。FASnI₃に存在する Sn²⁺に加えて、Sn⁴⁺の存在が示唆された。

今後の課題:

今後は、有機半導体側の電子状態を UPS 等で詳しく調べることにより、ペロブスカイト太陽電池の 界面電子状態の詳細を明らかにしていく予定である。

図 1. ペロブスカイトと有機半導体の HOMO、LUMO エネルギー位置.

図 2. Pb 系ペロブスカイト/有機半導体界面の Pb 4f HAXPES スペクトル.

参考文献:

- [1] M.A. Green, A. Ho-Baillie, and H.J. Snaith, Nat. Photonics 8, 506 (2014).
- [2] G. Niu, X. Guo, and L. Wang, J. Mater. Chem. A 3, 8970 (2015).
- [3] M.E. Kayesh, T.H. Chowdhury, K. Matsuishi, R. Kaneko, S. Kazaoui, J.J. Lee, T. Noda, and A. Islam, ACS Energy Lett. 3, 1584 (2018).