2021B1768

BL28B2

非破壊 CT-XRD 連成法による省エネルギー・高効率な解体工法のための鉄筋とコンクリートの付着力低下の解明

Investigation of Decrease of Bond Strength between Concrete and Reinforcement Steel Bar for Development of the Energy Saving and High Efficiency Demolishing Method by Non-Destructive Integrated CT-XRD Method

<u>高橋 駿人</u> Hayato Takahashi

東京理科大学 Tokyo University of Science

本研究は、外部応力による微視的なひび割れ発生メカニズムの解明のため、応力制御下のコン クリート系材料中へのひび割れの発生および伝播について、非破壊 CT-XRD 連成法を用いて観察 を行った。結果として、セメントペーストはひび割れ発生と同時に破壊に至り、鋼線入りセメン トペーストでは鋼線界面を通じてひび割れの発生が観察された.またモルタルでは、骨材とセメ ントペーストの界面からひび割れが観察された.

キーワード: コンクリート、破壊、解体,非破壊 CT-XRD 連成法

背景と研究目的:

コンクリート構造物の維持補修や供用終了の際にはコンクリートの解体が必要となる.現状は 大型重機を利用した解体作業がほとんどであり,騒音,粉塵等の環境問題のために,施工時間の 制限など解体工事は大きな制約を受けている.また解体で排出されるコンクリート塊は,道路の 路盤材やコンクリート用再生骨材として利用が進められているが,品質確保に課題が多い.これ ら課題の解決のため,新たな解体工法開発へのニーズは高いと考えられる.そこで本提案では, 脆性材料であるコンクリートの特性を利用して,応力状態を制御した条件下でのコンクリートに おけるひび割れの発生手法の開発を最終目的とする.まず,その第一歩としてひび割れ発生メカ ニズムの解明に取り組む.

本研究では、その開発の起点として、供試体に外部から応力を導入する手法を適用し、コンク リートの変形・破壊挙動の理解より、制御可能な解体技術工法の開発に資する知見の取得を目的 とする.具体的には、供試体外部から応力載荷状態を制御した状態で、破壊の起点となるひび割 れの発生とその伝播について、SPring-8 内のビームライン BL28B2 に設置の非破壊 CT-XRD 連成 法での観察を実施する.既往の研究では、麓らは圧縮載荷時の変形挙動を X 線 CT 画像と画像相 関法を用いて計測している事例はある[1].しかし、モルタルと粗骨材の2 相材料としてのマクロ な破壊挙動の違いは把握できているものの、更に微視的な観点で詳細なメカニズムの解明には至 っておらず、これらの把握は重要であると考えられる.そこで、セメントペーストとモルタルを 用いて、供試体外部から応力を段階的に加えた際のひび割れ発生条件およびその伝播について、 非破壊 CT-XRD 連成法により観察を実施した.

実験:

試料は水セメント比 0.5 のセメントペーストおよび水セメント比 0.5,砂セメント比 1.0 のモル タルである.使用したセメントは普通ポルトランドセメント(密度:3.15 g/cm³),砂は富士川産川 砂(密度:2.63 g/cm³)を粒径 0.6 mm以下にふるったもの,水は上水道水(密度:1.00 g/cm³)で ある.上記の材料を練り混ぜた後に,φ3.0×10 mmの型枠に打設し,鋼線入りセメントペーストを 作製した.なお,セメントペーストは鉄筋を模擬した鋼線を中央に配置した型枠内にも打設した. 打設後1日で脱型し,材齢 28 日まで水中養生した.

測定手法として,X線CT法による供試体内部の幾何学的形状や劣化状態を把握した上で,非

破壊で局所 XRD を実施できる、非破壊 CT-XRD 連成法を用いた[2]. 図1に非破壊 CT-XRD 連成 法の概要を示す. CT 測定では,特定のエネルギーを取得するようシリコン単結晶で回折させ,透 過像を取得して画像を再構成する.局所 XRD には,関心領域の固定のため白色 X 線を使用して, エネルギー分散型の回折プロファイルを取得する. 実験測定条件は, X 線 CT 測定のエネルギー が 25 keV,投影数が 1500 枚,露光時間が 0.4 秒,画素長が 2.46 µm で実施した. XRD 用の半導体 検出器 (SSD) と光軸のなす角度は 5°(2θ=10°) であり、ビームの幅は 50 μm, 高さ 300 μm であ った. また XRD 測定では、供試体から下流側のスリット2までは 150 mm, スリット2 から SSD 前のスリット3までは450mm であった.

図 2 に CT 測定時に供試体中に応力を載荷できるシステムの概要を示す.供試体はアルミ製治 具上の、背面支持がある台座内に設置する、外部にネジ送り式のステンレス圧子を設置し、これ を操作して供試体への応力載荷状態を制御する. ネジは 1 回転毎に 0.5 mm 進む設計になってお り、今回は圧子が接触した時点を基準としたネジの回転角度で応力状態を制御した。

結果および考察:

図3にモルタル供試体のひび割れの経時変化を示す.ひび割れはネジを540°回転させたときに 観察された、ひび割れの形状に着目して観察すると、ひび割れは骨材の界面に発生していること がわかる.これは骨材とセメントペースト間に、材料的に不連続で空隙が多い遷移帯と呼ばれる 領域があり、この領域を起点にひび割れが発生したためと考えられる[3]. その後、回転を加えて 応力を増加させても、ひび割れ幅の進展は見られなかった.

図4に鋼線入りセメントペースト供試体のひび割れの経時変化を示す.これによると、ひび割 れが発生すると、鋼線界面を通じてひび割れが進展していったことがわかる.また、鋼線近傍に 比較的大きな空隙が見られたが、そこへとひび割れは伝播していないことがわかる.これについ ても,鋼材―セメントペースト間の遷移帯領域が影響したためと考えられる[4].

なお、セメントペースト供試体は、ひび割れが発生した瞬間に供試体が破壊され、ひび割れを 観察出来なかった.セメントペーストは破壊に対する靭性が少ないことが考えられる.

以上のように、材料の構成が異なる供試体間での基礎的なひび割れ性状の違いを整理すること が出来た.また紙面には掲載していないが、XRD 測定においても鋼線領域とセメントペースト領 域の同定は出来たため、今後はセメントペースト部の劣化が見られた場合の挙動も検討する.

図 1. 非破壊 CT-XRD 連成法の概要[2]

図 2. CT 測定時の応力載荷システムの概要

(a)540°

(b)900°

図 3. モルタル供試体の CT 画像

図 4. 鋼線入りセメントペースト供試体の CT 画像

今後の課題:

今後は、モルタルの鋼線の有無が微視的なひび割れ性状に与える影響の検討や、セメントペースト部で材料変質領域がひび割れ性状に与える影響の検討を、2022A期以降の実験に反映させる.

参考文献:

[1] 麓 隆行、他, 土木学会論文集 A2 76(2), 337 (2020).

- [2] H. Takahashi, T. Sugiyama, Construct. Build. Mater. 203, pp.579-588 (2019).
- [3] B. D. Barnes et al., Cem. Concr. Res., 8(2), pp.233-243 (1978).
- [4] R. Cantone et al., *Eng. Struc.*, **226**(1), 111332 (2021).