2021B1889

酸素雰囲気下における燃料電池用白金ナノ粒子触媒の in situ SAXS および XAS 同時測定

Simultaneous in situ SAXS and XAS Measurements of Platinum Catalysts for Polymer Electrolyte Fuel Cell during Electrochemical Accelerated Degradation Tests with Oxygen Reduction Reaction

<u>川本</u>鉄平 ^a、西山 博通 ^a、脇坂 暢 ^b、渡辺 剛 ^c、犬飼 潤治 ^{a,d} <u>Teppei Kawamoto</u> ^a, Hiromichi Nishiyama ^a, Mitsuru Wakisaka ^b, Tsuyoshi Watanabe ^c, Junji Inukaia ^{a,d}

^a 山梨大学、^b 富山県立大学、^c 高輝度光科学研究センター、^d マレーシア国民大学 ^a Univ. of Yamanashi, ^b Toyama Pref. Univ., ^c JASRI, ^d SELFUEL UKM.

固体高分子型燃料電池 (PEFC)の更なる高性能、高耐久化にむけて、カソード極における電位変化が Pt 触媒の粒形、電子状態に及ぼす影響を明らかにするため *in situ* SAXS、XAS 同時測定を行った。市 販触媒の電位を制御し、酸素置換した 0.1 M 過塩素酸水溶液を 70 mLmin⁻¹で触媒に供給しながら測定 を行った。負荷応答耐久試験サイクル (0.6–1.0 V)、0 サイクルおよび 1000 サイクルの *in situ* SAXS の profile より q=1 nm⁻¹ 付近の SAXS profile 強度の low-q 側へのシフトが認められ、負荷応答耐久サイクル が粒径変化に及ぼす影響が観察され、また XAS では、XANES のホワイトラインのピーク強度が増加し Pt 触媒の酸化数がサイクルに対応して装荷する傾向を示した。

キーワード: SAXS、XAS、fuel cell、catalyst、electrochemistry,

背景と研究目的:

Pt の使用量を削減しながら触媒の高活性・高耐久性を維持・向上させていくことが、固体高分子形燃料電池の幅広い利用に向けた重要な課題である。そのためには、原子レベルからの触媒設計が重要な 鍵である[1–5]。燃料電池のカソード極(空気極)での電気化学特性を溶液中で測定しながら触媒の構造 が in situ で測定できれば、触媒設計指針に対し、大きな指針となる。

2021A1684 において、電気化学条件下で活物質の供給量を厳密に制御可能なフローセルを使用して、 市販の Pt 単味触媒の電気化学反応を制御しながら ASAXS、XAS を実施した。窒素ガス置換した過塩 素酸水溶液中において、負荷耐久サイクルを実施したところ、Pt 触媒粒子の Ostwald 熟成による粒径増 大が観察された。そこで本研究において、酸素ガス置換した過塩素酸水溶液中において Pt 触媒の負荷 応答耐久試験を実施し、各サイクル毎に SAXS、XAS 測定を実施し、触媒粒子の粒形、電子状態の変化 を得ることで、触媒粒子の劣化挙動を解明することを目的とした

実験:

試料: TEC10E50E(Pt 担持率 50 wt%、田中貴金属工業)

in situ チャンネルフローセル内の 10 mm × 4 mm のカーボン電極上に微小量 4 µg/cm²の試料を担持。 担持した触媒上にナフィオンを厚さ約 100 nm で被覆することにより、カーボン電極上からの剥離を防い だ。BL19B2 に設置されている小角散乱装置を用いて、75 °C に加温した 0.1 M 過塩素酸水溶液中にお ける in situ 測定を実施した。カメラ長を 1 m とし、11.50 keV と 11.56 keV で小角散乱パターンを測定した。 さらに、白金の XANES 測定も行った。電気化学測定の条件として、燃料電池の起動・停止を模擬した、 燃料電池実用化推進協議会 (FCCJ) セル評価解析プロトコルである、電位サイクル (0.6 V、3 秒→1.0 V、 3 秒)の負荷耐久試験を 0. 200、500、1000、3000、5000 サイクルで実施した。

結果および考察:

75 °C、0.1 M HClO₄ 水溶液をチャンネルフロー装置で供給し、SPring-8 BL19B2 に設置されている小 角散乱装置を用いて、in situ 測定を実施した。測定試料-二次元検出器間のカメラ長 1 m とし、また X 線 エネルギーとして Pt L₃ 吸収端の前後のエネルギー帯である 11.50 keV と 11.56 keV の小角散乱パターン を測定することでカーボンセル、C 担体の影響を除去した Pt ナノ粒子の SAXS パターンを測定した。in situ SAXS 測定における電極電位は 0.4 V vs. RHE で固定した。 in situ SAXS の profile を Fig. 1 に示 す。SAXS profile を比較すると 0 cycle (I) における q=1 nm⁻¹付近の SAXS profile に認められる Pt ナ ノ粒子由来の SAXS 強度の増加が 1000 cycle 以降の SAXS (II、III、IV)では q=0.4 nm⁻¹付近へ移行し ている。SAXS 測定において、電極電位は 0.4 V vs.RHE としているため、実験に使用した Pt ナノ粒子は すべて還元状態にあると考えられる。このことから、負荷応答耐久サイクルによる Pt ナノ粒子の凝集を測 定したと考えられる。Ostwald 熟成によりカーボン担体に担持されたナノ粒子の移動凝集が原因と考えら れる。

Fig. 2 に Pt L3 吸収端の XAS スペクトルを示す。 XANES 領域において負荷変動サイクルによる XAS スペクトルの変化が測定された。 負荷応答耐久サイクルの試行回数に応じて、ホワイトラインのピーク強度が 増加した。 このことから、サイクルによる Pt ナノ粒子の酸化状態が、 僅かではあるが酸化的な表面を構築 していることが示唆された。

今後、燃料電池実作動条件におけるカソード極を模擬するべく、PtCo 合金触媒を用いた測定を実施す る予定である。

参考文献:

[1] M. Wakisaka, et al. *Electrochem. Commun.*, **67**, 47–50 (2016).

[2] M. Chiwata, et al. *Electrochemistry*, 84, 133–137 (2016).

[3] M. Watanabe, et al. J. Electrochem. Soc, 163, F455–F463 (2016).

[4] S. Lankiang, et al. *Electrochim. Acta*, **182**, 131–142 (2015).

[5] H. Yano, et al. J. Electroanal. Chem., 688, 137-142 (2013).

Fig. 1 An accelerated durability test (ADT) cycle dependence of SAXS profiles of Pt/CB catalysts. Pt/CB (TEC10E50E) were ADT comprising standard potential step cycles between 0.6 V and 1.0 V vs. RHE in O_2 -purged 0.1M HClO₄ solution at 75 °C. The curves are vertically offset for clarity.

Fig. 2 An accelerated durability test (ADT) cycle dependence of XAS spectra of Pt/CB catalysts, 0, 500, 1000 and 5000 cycles. Pt/CB (TEC10E50E) were ADT comprising standard potential step cycles between 0.6 V and 1.0 V vs. RHE in O₂-purged 0.1M HClO₄ solution at 75 °C.