2021B1937

BL14B2

BaO-SiO₂ガラスの結晶化挙動のその場 XAFS 測定 In situ XAFS Measurement of BaO-SiO₂ Glasses During Crystallization

<u>梶原 貴人</u>^{a, c}, 西堀 麻衣子^{b, c} <u>Takato Kajihara</u>^{a, c}, Maiko Nishibori^{b, c}

^aAGC 株式会社,^b 東北大学,^c九州大学 ^aAGC Inc.,^bTohoku university,^cKyushu university

BaO-SiO₂ 系ガラスに Li₂O を添加した際の結晶化挙動を調べるために室温から 1000 °C までの 昇温過程における Ba K 端のその場 XAFS 測定を実施した。Li₂O 量が増えるにつれて E₀ や White line の変化が低温で生じ、わずか 0.2 mol%の Li₂O を導入することで生成する結晶相が変化するこ とが明らかとなった。また昇温後の冷却過程における XAFS スペクトルの変化が顕著であり昇温 過程で生成した構造に対して降温時に原子の再配置が起き、結晶成長が進んだ可能性が示唆され た。

+-*ν*-*ν*-+: In situ XAFS, Ba-K edge, Li₂O-BaO-SiO₂ glass, Glass-ceramics

背景と研究目的:

結晶化ガラスはガラスと結晶の両方の特性を併せ持ち、機械特性や光学特性、熱特性等の面で 優れた材料である。特に、熱処理前のガラス組成が結晶化挙動に及ぼす影響を理解することは、 結晶化ガラスの微細構造制御や製造プロセスの最適化において重要である。例えば、BaO-SiO2系 ガラスは、ZrO2や TiO2などの核生成剤なしに均質に核生成が起こる注目すべき系の一つである ^{II]}。これまでに我々は、BaO-SiO2系ガラスへの微量アルカリ金属の添加効果に着目し、Li2O-BaO-SiO2(LBS)ガラスの結晶化挙動について検討してきた。その結果、BaOをLi2Oに置換すること で代表的な BaO-SiO2系の結晶相である Ba2Si4O10(H-BS2)の生成温度の低下や H-BS2 から BaSi2Os (L-BS2)への相変態への促進効果があること^[2]、BaOへのLi2O 置換量が増加すると Ba-Ba クラ スターが生成する可能性^[3]があることが示唆されている。このように、Li2Oの導入がガラス構造 および結晶化挙動へ影響することは明らかであるが、結晶化過程における微細構造変化の温度依 存性を理解するには至っていない。そこで本課題では、Li2Oがガラスの結晶化挙動に及ぼす影響 を明らかにすることを目的とし、BaK吸収端その場加熱 XAFS 測定により核生成および結晶化に ともなう Ba 近傍微細構造変化を追跡した。

実験:

実験は BL14B2 ビームラインで実施した。試料は下記に示す組成のガラスを用い、これらのサンプルを 0.35 mmt の厚みになるように鏡面研磨を実施した。

LBSx ガラス: xLi2O-(30-x)BaO-70SiO₂ [mol%] (x=0, 0.2, 1, 3, 5)

加工後の試料を石英製 in-situ セルに設置し、昇温速度 10 ℃/min で室温から目的の温度まで昇 温を行った。なお、Ba K 吸収端 XAFS スペクトル測定は透過法、クイックスキャンで実施した。 試料を 500 ℃ に加熱後、950 ℃ まで 50 ℃ 毎にスペクトルを収集し、1000 ℃ に到達した後、ス ペクトルを収集しながら室温まで自然放冷で冷却した。

結果および考察:

Fig.1に、熱処理温度にともなうLi₂O添加量の異なる試料のBaK吸収端XANESスペクトル変化を示す。この結果から、熱処理温度の増加にともないスペクトル形状が変化することが分かる。 熱処理後のスペクトル形状は、Li₂Oを含有しないLBS0とLi₂Oを含有するLBS0.2 ~ LBS5で大きく変化した。さらに、すべての試料において熱処理後のスペクトル形状が950℃のものとは大きく異なっていることから、950℃~1000℃の昇温過程あるいは1000℃から室温への降温過程 で微細構造が変化したと考えられる。

Fig. 2 に、各試料の E_0 および White line と E_0 の差分と熱処理温度の関係を示す。すべての試料 で 700 °C 以降で E_0 が増加する傾向が見られたが、その温度は Li_2O 量が多いほど低温であった。 また、 E_0 と White line の差分は 750 °C 以降に大きく減少する傾向があり、この変化は Li_2O 量の多 い試料ほど低温で生じた。

Fig.3に、冷却後の試料のEXAFSスペクトルより算出した動径分布関数(RDF)を示す。LBS0 は他の試料と比較して第一配位圏(Ba-O)の距離と頻度がやや大きく、第二配位圏以降のピーク 形状が大きく異なっていた。このことから、LBS0は他の試料とは異なる結晶相が生成したと考え られる。

Fig. 4 に、LBS1の昇温および降温過程における EXAFS スペクトルより算出した RDF を示す。 なお、本測定では降温を自然放冷で行っており、測定中に試料温度は変化(低下)している。降 温過程での RDF に注目すると、そのピーク形状は昇温過程における 950 ℃ の形状と類似してい るものの、第一配位圏(Ba-O)以降のピーク強度は温度が低下するにつれて大きく増加している。 これは、昇温過程で生成した構造(結晶核)に対して降温時に原子の再配置が生じ、結晶成長が 進行したことを示している可能性が考えられる。一方で、降温時の RDF 強度の変化には冷却によ るデバイワラー因子の影響も含んでおり、今後、詳細な解析が必要である。

Fig. 1 In-situ heating Ba K-edge XAFS spectra of LBS glasses at a temperature increase rate of 10 °C/min.

Fig. 2 Temperature variation of E_0 and the difference between E_0 and white line at a temperature increase rate of 10 °C/min.

Fig. 3 Radial distribution function of LBSx glass after cooling obtained from EXAFS date of the Ba K-edge.

Fig. 4 Radial distribution function of LBS1 glass obtained from EXAFS date of the Ba K-edge during temperature rise and fall processes.

参考文献:

[1] E. D. Zanotto and P. F. James, J. Non-Cryst. Solids, 104(1) (1988) 70-72.

[2] E. G. Rowlands, Ph D. Thesis, University of Sheffield, (1976).

[3] 梶原貴人 他, 令和3年度 SPring-8 一般課題(産業分野)実施報告書 (2021A), 2021A1648.